Preparation and electrochemical properties of Pb-0.3wt%Ag/Pb-WC composite inert anodes

Shiwei He , Ruidong Xu , Jiong Wang , Sha Han , Buming Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 811 -817.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 811 -817. DOI: 10.1007/s11595-016-1450-4
Advanced Materials

Preparation and electrochemical properties of Pb-0.3wt%Ag/Pb-WC composite inert anodes

Author information +
History +
PDF

Abstract

We prepared Pb-0.3wt%Ag/Pb-WC (WC stands for tungsten carbide, the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates, and investigated the electrochemical properties of the composite inert anodes, which were obtained under different forward pulse average current densities from 2 A/dm2 to 5 A/dm2 and WC concentrations from 0 g/L to 40 g/L in bath. The kinetic parameters of oxygen evolution, corrosion potential and corrosion current of the composite inert anodes were obtained in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+ and 150 g/L H2SO4 at 35 °C, by measuring the anodic polarization curves, Tafel polarization curves and cyclic voltammetry curves. The results show that Pb-0.3wt%Ag/Pb-WC composite inert anodes obtained under forward pulse average current density of 3 A/dm2 and WC concentration of 30 g/L in an original acid plating bath, possess higher electrocatalytic activity of oxygen evolution, lower overpotential of oxygen evolution, better reversibility of electrode reaction and corrosion resistance in [ZnSO4+H2SO4] solution. The overpotential of oxygen evolution of the composite inert anode is 0.926 V under 500 A/m2 in [ZnSO4+H2SO4] solution, and 245 mV lower than that of Pb-1%Ag alloy; the corrosion current of the composite inert anode is 0.95×10-4 A which is distinctly lower than that of Pb-1%Ag alloy, showing the excellent corrosion resistance.

Keywords

double-pluse / electrodeposition / composite inert anode / WC / electrochemical properties

Cite this article

Download citation ▾
Shiwei He, Ruidong Xu, Jiong Wang, Sha Han, Buming Chen. Preparation and electrochemical properties of Pb-0.3wt%Ag/Pb-WC composite inert anodes. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(4): 811-817 DOI:10.1007/s11595-016-1450-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bestetti M, Ducati U, Kelsall GH, et al. Use of Catalytic Anodes for Znic Electrowinning at High Current Densities from Purified Electrolytes[J]. Can. Metall. Q., 2001, 40(4): 451-458.

[2]

Jha KM, Kumar V, Singh JR. Review of Hydrometallurgical Recovery of Znic from Industrial Wastes[J]. Resour. Conserv. Recycl., 2001, 33(1): 1-22.

[3]

Xu RD, Huang LP, Zhou JF, et al. Effect of Tungsten Carbide on Electrochemical Properties and Microstructural Features of Al/Pb-PANI-WC Composite Inert Anodes Used in Zinc Electrowinning[J]. Hydrometallurgy, 2012, 125(126): 8-15.

[4]

Yang HT, Liu HR, Zhang YC, et al. Properties of a New Type Al/Pb-0.3Ag Alloy Composite Anode for Zinc Electrowinning[J]. Int. J. Miner. Metall. Mater., 2013, 20(10): 986-993.

[5]

Felder A, Prengaman RD. Lead Alloys for Permanent Anodes in the Nonferrous Metals Industry[J]. JOM., 2006, 58(10): 28-31.

[6]

Petrova M, Noncheva Z, Dobrev T, et al. Investigation of the Processes of Obtaining Plastic Treatment and Electrochemical Behaviour of Lead Alloys in Their Capacity as Anodes during the Electro-extraction of Zinc[J]. Hydrometallurgy, 1996, 40(3): 293-319.

[7]

Hein K, Schierle T. Oxygen Overvoltage at Insoluble Anode in the System Pb-Ag-Ca[J]. Erzmetall, 1991, 44(9): 447-451.

[8]

Rocca E, Steimetz J. Mechanism of Passivation of Pa(Ca)-Sn Alloys in Sulfuric Acid: Role of Tin[J]. Electrochim. Acta, 1999, 44(25): 4611-4618.

[9]

Yang SH, Tang MT, Chen YF, et al. Anodic Relection Kinetics of Electrowinning Zinc in System of Zn(II)-NH3-NH4Cl-H2O[J]. Trans. Nonferrous Met. Soc. China, 2004, 14(3): 626-630.

[10]

Zhang QB, Hua YX. Effect of the Ionic Liquid Additive-[BMIM] H2SO4 on the Kinetics of Oxygen Evolution during Zinc Electrowinning[J]. Acta Phys. Chim. Sin., 2011, 27(1): 149-155.

[11]

Levy RB, Boudart M. Platimun-like Behavior of Tungsten Carbide in Surface Catalysis[J]. Science, 1972, 181(4099): 547-549.

[12]

Mclntyre DR, Burstein GT, Vossen A. Effect of Carbon Monoxide on the Electrooxidation of Hydrogen by Tungsten Carbide[J]. J. Power Sources, 2002, 107(1): 67-73.

[13]

Rosenbaum M, Zhao F, Quaas M, et al. Evaluation of Catalytic Properties of Tungsten Carbide for the Anode of Microbial Fuel Cells[J]. Appl. Catal. B:Environ, 2007, 74(3–4): 261-269.

[14]

Cheng Y, Xie WM, Yao GX, et al. Electrocatalytic Activity of Tungsten Carbide and Natural Zeolite Composite in Aqueous Solution[J]. Chin. J. Chem. Eng., 2012, 153(2): 254-261.

[15]

He L, Tan Y, Wang X, et al. Tribological Properties of WC and CeO2 Particles Reinforced in-situ Synthesized NiAl Matrix Composite Coatings at Elevated Temperature[J]. Surf. Coat. Technol., 2014, 244: 123-130.

[16]

Liu ZL, Zhu SR. A Study of the Mechanism of Electrocatalysis of Pb-WC Composite Anode[J]. Plat. Finish, 1990, 12(1): 11-17.

[17]

Wu M, Shen PK, Wei ZD. Hydrogen Evolution Reaction on Tungsten Carbide Promoted Pt/C Electrocatalysts[J]. Battery Bimon, 2007, 37(3): 171-173.

[18]

Shan Q, Li Z, Jiang Y, et al. Effect of Ni Addition on Microstructure of Matrix in Casting Tungsten Carbide Particle Reinforced Composite[J]. J. Mater. Sci. Technol., 2013, 29(8): 720-724.

[19]

Wang JL, Xu RD, Zhang YZ. Influence of SiO2 Nano-particles on Microstructures and Properties of Ni-W-P/CeO2-SiO2 Composites Prepared by Pulse Electrodeposition[J]. Trans. Nonferrous Met. Soc. China, 2010, 20(5): 839-843.

[20]

Wang JL, Zhang YZ, Xu RD, et al. Probe into Deposition Mechanism of Double Pulse Electrodepositing Ni-W-P Matrix Composite Coatings Containing CeO2 and SiO2 Nano-particles[J]. J. Rare Earths, 2010, 28: 437-441.

[21]

Chen Z, Yu Q, Liao D, et al. Infuence of Nano-CeO2 on Coating Structure and Properties of Electrodeposited Al/α-PbO2/β-PbO2[J]. Trans. Nonferrous Met. Soc. China, 2013, 23(5): 1382-1389.

[22]

Fang Y, Liu Z. First Principles Tafel kinetics of Methanol Oxidation on Pt(111)[J]. Surf. Sci., 2014, 13(5): 6-11.

[23]

Mann RF, Thurgood CP. Evaluation of Tafel-Volmer Kinetic Parameters for the Hydrogen Oxidation Reaction on Pt(110) Electrodes[J]. J. Power Sources, 2011, 196(10): 4705-4713.

[24]

Bao C, Zhang X. A Nonlinear Relationship between Area-specific and Volume-specific Exchange Current Densites[J]. Electrochim. Acta, 2014, 130(6): 785-790.

[25]

Zhou J, Xu R, Chen B. Study on Electrochemical Properties of Al/Pb-PANI-WC Inert Anodes[J]. Adv. Sci. Lett., 2011, 4(3): 1225-1229.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/