Numerical simulation on heat transfer enhancement of phase change thermal storage devices for low-middle temperature

Zheng Sun , Jiaoqun Zhu , Weibing Zhou , Xiaomin Cheng , Jinrong Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 799 -804.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 799 -804. DOI: 10.1007/s11595-016-1448-y
Advanced Materials

Numerical simulation on heat transfer enhancement of phase change thermal storage devices for low-middle temperature

Author information +
History +
PDF

Abstract

Using Ba(OH)2·8H2O as phase change material (PCM) and water as heat transfer fluid (HTF), we numerically simulated annular finned-tube heat exchangers. In order to measure and analyze the impact of parameters in the heating/cooling process, temperature changes of different monitoring points, fin widths, and fin pitches as key parameters were considered and applied. The experimental results show that the heat exchange process can be divided into three stages within a certain time. The faster heat transfer rate is associated with the greater temperature difference between PCM and HTF. Furthermore, fins width and pitch affect dramatically the heat charging/discharging rate. The large fins width or small fins pitch is beneficial for extending the heat exchange surface, leading to improve heat transfer efficiency.

Keywords

Ba(OH)2·8H2O / PCM / annular finned-tube / heat transfer enhancement / heat storage

Cite this article

Download citation ▾
Zheng Sun, Jiaoqun Zhu, Weibing Zhou, Xiaomin Cheng, Jinrong Zhu. Numerical simulation on heat transfer enhancement of phase change thermal storage devices for low-middle temperature. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(4): 799-804 DOI:10.1007/s11595-016-1448-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dincer I, Rosen M. Thermal Energy Storage: Systems and Applications[M], 2002

[2]

Liu M, Saman W, Bruno F. Review on Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132.

[3]

Wu X, Zhang W, Gou Q, et al. Numerical Simulation of Heat Transfer and Fluid Flow Characteristics of Composite Fin[J]. International Journal of Heat and Mass Transfer, 2014, 75: 414-424.

[4]

Zhang L, Zhu J, Zhou W, et al. Thermal and Electrical Conductivity Enhancement of Graphite Nanoplatelets on Form-stable Polyethylene Glycol/Polymethyl Methacrylate Composite Phase Change Materials[J]. Energy, 2012, 39(1): 294-302.

[5]

Alkan C, Sarı A, Karaipekli A, et al. Preparation, Characterization, and Thermal Properties of Microencapsulated Phase Change Material for Thermal Energy Storage[J]. Solar Energy Materials and Solar Cells, 2009, 93(1): 143-147.

[6]

Hawlader MNA, Uddin MS, Khin MM. Microencapsulated PCM Thermal-energy Storage System[J]. Applied Energy, 2003, 74(1): 195-202.

[7]

Michels H, Pitz-Paal R. Cascaded Latent Heat Storage for Parabolic Trough Solar Power Plants[J]. Solar Energy, 2007, 81(6): 829-837.

[8]

Velraj R, Seeniraj RV, Hafner B, et al. Experimental Analysis and Numerical Modeling of Inward Solidification on a Finned Vertical Tube for a Latent Heat Storage Unit[J]. Solar Energy, 1997, 60(5): 281-290.

[9]

Eftekhar J, Haji-Sheikh A, Lou DYS. Heat Transfer Enhancement in a Paraffin Wax Thermal Storage System[J]. Journal of Solar Energy Engineering, 1984, 106(3): 299-306.

[10]

Liu Z, Sun X, Ma C. Experimental Investigations on the Characteristics of Melting Processes of Stearic Acid in an Annulus and its Thermal Conductivity Enhancement by Fins[J]. Energy Conversion and Management, 2005, 46(6): 959-969.

[11]

Zhang Y, Faghri A. Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using the Internally Finned Tube[J]. International Journal of Heat and Mass Transfer, 1996, 39(15): 3165-3173.

[12]

Ismail KAR, Alves CLF, Modesto M S. Numerical and Experimental Study on the Solidification of PCM around a Vertical Axially Finned Isothermal Cylinder[J]. Applied Thermal Engineering, 2001, 21(1): 53-77.

[13]

Zalba B, Marı́n JM, Cabeza LF, et al. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283.

[14]

Sharma A, Tyagi VV, Chen CR, et al. Review on Thermal Energy Storage with Phase Change Materials and Applications[J]. Renewable and Sustainable energy reviews, 2009, 13(2): 318-345.

[15]

Farid MM, Khudhair AM, Razack SAK, et al. A Review on Phase Change Energy Storage: Materials and Applications[J]. Energy conversion and management, 2004, 45(9): 1597-1615.

[16]

Naumann R, Emons HH. Results of Thermal Analysis for Investigation of Salt Hydrates as Latent Heat-storage Materials[J]. Journal of Thermal Analysis and Calorimetry, 1989, 35(3): 1009-1031.

[17]

Hirbodi K, Yaghoubi M. Experimental Investigation of Natural Dehumidification over an Annular Finned-tube[J]. Experimental Thermal and Fluid Science, 2014, 57: 128-144.

[18]

Lee M, Kang T, Joo Y, et al. Heat Transfer Characteristics of Spirallycoiled Circular Fin-tube Heat Exchangers Operating under Frosting Conditions[J]. International Journal of Refrigeration, 2011, 34(1): 328-336.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/