Crystal structure and hydrogen storage behaviors of Mg/MoS2 composites from ball milling

Zongying Han , Shixue Zhou , Naifei Wang , Qianqian Zhang , Tonghuan Zhang , Weixian Ran

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 773 -778.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 773 -778. DOI: 10.1007/s11595-016-1444-2
Advanced Materials

Crystal structure and hydrogen storage behaviors of Mg/MoS2 composites from ball milling

Author information +
History +
PDF

Abstract

The Mg/MoS2 composites were prepared by ball milling under argon atmosphere, and the effect of MoS2 on the crystal structure and hydrogen storage properties of Mg was investigated. It is found that 10 wt% of MoS2 is sufficient to prevent particle aggregation and cold welding during the milling process. The crystallite size of Mg will remain constant at slightly less than 38.8 nm with the milling process due to the size confinement effect of MoS2. The dehydrogenation temperature of MgH2 is reduced to 390.4-429.4 °C due to the crystallite size reduction. Through fitting by Johnson-Mehl-Avrami model, it is found that Mg crystal grows by three dimension controlled by interface transformation during the process of MgH2 decomposition. MoS2 has a weak catalyst effect on the decomposition of MgH2 and activation energy of 148.9 kJ/mol is needed for the dehydrogenation process calculated by the Arrhenius equation.

Keywords

molybdenum disulfide / crystal structure / dehydrogenation temperature / decomposition kinetics

Cite this article

Download citation ▾
Zongying Han, Shixue Zhou, Naifei Wang, Qianqian Zhang, Tonghuan Zhang, Weixian Ran. Crystal structure and hydrogen storage behaviors of Mg/MoS2 composites from ball milling. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(4): 773-778 DOI:10.1007/s11595-016-1444-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jain IP, Lal C, Jain A. Hydrogen Storage in Mg: A Most Promising Material[J]. Int. J. Hydrogen Energy, 2010, 35(10): 5133-5144.

[2]

Aguey-Zinsou KF, Ares-Fernández JR. Hydrogen in Magnesium: New Perspectives toward Functional Stores[J]. Energ. Environ. Sci., 2010, 3(5): 526-543.

[3]

Satyapal S, Petrovic J, Read C, et al. The US Department of Energy's National Hydrogen Storage Project: Progress Towards Meeting Hydrogen-powered Vehicle Requirements[J]. Catal. Today, 2007, 120(3): 246-256.

[4]

Yang J, Sudik A, Wolverton C, et al. High Capacity Hydrogen Storage Materials: Attributes for Automotive Applications And Techniques for Materials Discovery[J]. Chem. Soc. Rev., 2010, 39(2): 656-675.

[5]

Lei T, Ouyang C, Tang W, et al. Enhanced Corrosion Protection of MgO Coatings on Magnesium Alloy Deposited by an Anodic Electrodeposition Process[J]. Corros. Sci., 2010, 52(10): 3504-3508.

[6]

Zaluska A, Zaluski L, Ström-Olsen J. Nanocrystalline Magnesium for Hydrogen Storage[J]. J. Alloys Compd., 1999, 288(1): 217-225.

[7]

Huot J, Ravnsbæk DB, Zhang J, et al. Mechanochemical Synthesis of Hydrogen Storage Materials[J]. Prog. Mater Sci., 2013, 58(1): 30-75.

[8]

Schlapbach L, Züttel A. Hydrogen-storage Materials for Mobile Applications[J]. Nature, 2001, 414(6861): 353-358.

[9]

Suryanarayana C. Mechanical Alloying and Milling[J]. Prog. Mater Sci., 2001, 46(1): 1-184.

[10]

Grosjean MH, Zidoune M, Roué L, et al. Effect of Ball Milling on the Corrosion Resistance of Magnesium in Aqueous Media[J]. Electrochim. Acta, 2004, 49(15): 2461-2470.

[11]

Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal Hydride Materials for Solid Hydrogen Storage: A Review[J]. Int. J. Hydrogen Energy, 2007, 32(9): 1121-1140.

[12]

Hwang S, Nishimura C, McCormick P. Mechanical Milling of Magnesium Powder[J]. Mater. Sci. Eng.: A, 2001, 318(1): 22-33.

[13]

Zhou SX, Chen HP, Ding C, et al. Effectiveness of Crystallitic Carbon from Coal as Milling Aid and for Hydrogen Storage during Milling with Magnesium[J]. Fuel, 2013, 109: 68-75.

[14]

Chhowalla M, Amaratunga GA. Thin Films of Fullerene-like MoS2 Nanoparticles with Ultra-low Friction and Wear[J]. Nature, 2000, 407(6801): 164-167.

[15]

Winer WO. Molybdenum Disulfide as a Lubricant: A Review of the Fundamental Knowledge[J]. Wear, 1967, 10(6): 422-452.

[16]

Bartz WJ, Müller K. Investigations on the Lubricating Effectiveness of Molybdenum Disulfide[J]. Wear, 1972, 20(3): 371-379.

[17]

Holinski R, Gänsheimer J. A Study of the Lubricating Mechanism of Molybdenum Disulfide[J]. Wear, 1972, 19(3): 329-342.

[18]

Sugioka M, Aomura K. A Possible Mechanism for Catalytic Decomposition of Hydrogen Sulfide over Molybdenum Disulfide[J]. Int. J. Hydrogen Energy, 1984, 9(11): 891-894.

[19]

Li YG, Wang HL, Xie LM, et al. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction [J]. J. Am. Chem. Soc., 2011, 133(19): 7296-7299.

[20]

Tye CT, Smith KJ. Catalytic Activity of Exfoliated MoS2 in Hydrodesulfurization, Hydrodenitrogenation and Hydrogenation Reactions[J]. Top. Catal., 2006, 37(2–4): 129-135.

[21]

Patterson A. The Scherrer Formula for X-ray Particle Size Determination[J]. Phys. Rev., 1939, 56(10): 978-982.

[22]

Huot J, Liang G, Boily S, et al. Structural Study and Hydrogen Sorption Kinetics of Ball-milled Magnesium Hydride[J]. J. Alloys Compd., 1999, 293: 495-500.

[23]

Berube V, Radtke G, Dresselhaus M, et al. Size Effects on the Hydrogen Storage Properties of Nanostructured Metal Hydrides: A Review[J]. Int. J. Energ. Res., 2007, 31(6–7): 637-663.

[24]

Baldé CP, Hereijgers BP, Bitter JH, et al. Sodium Alanate Nanoparticles-Linking Size to Hydrogen Storage Properties[J]. J. Am. Chem. Soc., 2008, 130(21): 6761-6765.

[25]

Málek J. The Applicability of Johnson-Mehl-Avrami Model in the Thermal Analysis of the Crystallization Kinetics of Glasses[J]. Thermochim Acta, 1995, 267: 61-73.

[26]

Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III[J]. J. Chem. Phys., 1941, 9(2): 177-184.

[27]

Karty A, Grunzweig-Genossar J, Rudman P. Hydriding and Dehydriding Kinetics of Mg in a Mg/Mg2Cu Eutectic Alloy: Pressure Sweep Method[J]. J. Appl. Phys., 1979, 50(11): 7200-7209.

[28]

Zhou SX, Chen HP, Ran WX, et al. Effect of Carbon from Anthracite Coal on Decomposition Kinetics of Magnesium Hydride[J]. J. Alloys Compd., 2014, 592: 231-237.

[29]

Galwey AK, Brown ME. Application of the Arrhenius Equation to Solid State Kinetics: Can This be Justified[J]. Thermochim Acta, 2002, 386(1): 91-98.

[30]

Laidler KJ. The Development of the Arrhenius Equation[J]. J. Chem. Educ., 1984, 61(6): 494-498.

[31]

Jia YH, Han SM, Zhang W, et al. Hydrogen Absorption and Desorption Kinetics of MgH2 Catalyzed by MoS2 and MoO2[J]. Int. J. Hydrogen Energy, 2013, 38(5): 2352-2356.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/