Deposition of Ag nanoparticles on carbon microspheres surface: Evaluation of structures, electrochemical and optical properties

Weijia Yang , Yamin Hao , Lingpeng Yan , Yongzhen Yang , Yongkang Chen , Xuguang Liu , Bingshe Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 743 -749.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 743 -749. DOI: 10.1007/s11595-016-1440-6
Advanced Materials

Deposition of Ag nanoparticles on carbon microspheres surface: Evaluation of structures, electrochemical and optical properties

Author information +
History +
PDF

Abstract

A hybrid material of carbon microspheres (CMSs) with Ag decoration (Ag/CMSs) was developed. Poly (3-hexylthiophene):Ag/CMSs composite film was prepared by spin-coating. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, thermogravimetric analysis and cyclic voltammetry were employed to analyze the morphologies, structures, thermal properties and energy levels of Ag/CMSs. The optical property of the composite films was characterized by ultraviolet-visible spectrophotometry and fluorescent spectrometry. The results indicate that silver nanoparticles (Ag NPs, d = 10-20 nm) are distributed on the surface of CMSs. LUMO and HOMO energy levels of Ag/CMSs are -3.97 and -5.52 eV, below the vacuum energy level, respectively, indicating that it is feasible to use Ag/CMSs as an electron acceptor. Ag NPs are blended into the active layer to trigger localized surface plasmon resonance, and consequently enhance light harvesting. The coupling of surface plasmons and excitons increased the probability of exciton dissociation.

Keywords

carbon microspheres / Ag nanoparticles / composite film / optical performance / localized surface plasmon resonance

Cite this article

Download citation ▾
Weijia Yang, Yamin Hao, Lingpeng Yan, Yongzhen Yang, Yongkang Chen, Xuguang Liu, Bingshe Xu. Deposition of Ag nanoparticles on carbon microspheres surface: Evaluation of structures, electrochemical and optical properties. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(4): 743-749 DOI:10.1007/s11595-016-1440-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang SH, Xu QL, Li F, et al. Preparation and Properties of Cellulosebased Carbon Microsphere/poly (Lactic Acid) Composites[J]. J. Compos. Mater., 2014, 48(11): 1297-1302.

[2]

Liu WF, Yang YZ, Luan CH, et al. Thermal Stability and Surface Chemistry Evolution of Oxidized Carbon Microspheres[J]. Full. Nanot. and Carb. Nanostr., 2014, 22: 670-678.

[3]

Zhou LC, Shao YM, Liu JR, et al. Preparation and Characterization of Magnetic Porous Carbon Microspheres for Removal of Methylene Blue by a Heterogeneous Fenton Reaction[J]. ACS Appl. Mater. Interfaces, 2014, 6: 7275-7285.

[4]

Zhao QL, Wang XY, Wu C, et al. Supercapacitive Performance of Hierarchical Porous Carbon Microspheres Prepared by Simple One-pot Method[J]. J. Power Sources, 2014, 254: 10-17.

[5]

Yang YZ, Song JJ, Li Y, et al. Synthesis and Optical Property of P3HT/Carbon Microsphere Composite Film[J]. J. Mater. Res., 2013, 28: 998-1003.

[6]

Li Y, Yan LP, Yang YZ, et al. Spin-coated P3HT: Aminated Carbon Microsphere Composite Films for Polymer Solar Cells[J]. J. Mater. Res., 2014, 29(4): 492-500.

[7]

Yan LP, Li Y, Yang YZ, et al. P3HT/Dodecylamine Functioned Carbon Microspheres Composite Films for Polymer Solar Cells[J]. Full., Nanot. and Carb. Nanostr., 2014, 23: 549-556.

[8]

Sun Y, Yang G, Wen C, et al. Preparation of Carbon Sphere from Lactose by Hydrothermal Reaction and Its Performance in Gas Separation[J]. Environ. Prog. Sustain., 2014, 33(2): 581-587.

[9]

Wang Y, Chen S, Wang FZ, et al. Synthesis and Characterization of Natural Polymer/Inorganic Antibacterial Nanocomposites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28(5): 1044-1047.

[10]

Wang X, Liu XH, Wang XY. Self-assembly of Ag-TiO2 Nanoparticles: Synthesis, Characterization and Catalytic Application[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2012, 27(5): 847-851.

[11]

Rather S, Naik M, Hwang SW, et al. Room Temperature Hydrogen Uptake of Carbon Nanotubes Promoted by Silver Metal Catalyst[J]. J. Alloy Compd., 2009, 475: L17-L21.

[12]

Gan QQ, Filbert JB, Zakya HK. Plasmonic-enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier[J]. Adv. Mater., 2013, 25: 2385-2396.

[13]

Li XH, Wallace CHC, Lu HF, et al. Efficiency Enhancement of Organic Solar Cells by Using Shape-Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles[J]. Adv. Funct. Mater., 2013, 21: 2728-2735.

[14]

Yang X, Chueh CC, Li CZ, et al. High-efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping[J]. Adv. Energy Mater., 2013, 3: 666-673.

[15]

Baek SW, Garam P, Jonghyeon N, et al. Au@Ag Core-shell Nanocubes for Efficient Plasmonic Light Scattering Effect in Low Bandgap Organic Solar Cells[J]. ACS Nano, 2014, 8(4): 3302-3312.

[16]

Paul D, Lyndsey A S, et al. Natural Reducing Agents for Electroless Nanoparticle Deposition: Mild Synthesis of Metal/Carbon Nanostructured Microspheres[J]. Mater. Chem. Phys., 2013, 140: 343-349.

[17]

Andr´es RG, Flavio FCT, Elena VB, et al. Deposition of Silver Nanoparticles onto Human Serum Albumin-functionalised Multiwalled Carbon Nanotubes[J]. Can. J. Chem. Eng., 2013, 91: 264-270.

[18]

Li S, Yan XL, Yang Z, et al. Preparation and Antibacterial Property of Silver Decorated Carbon Microspheres[J]. Appl. Surf. Sci., 2014, 292: 480-487.

[19]

Farbod A, Mazeyar PG, Ali S, et al. Deposition of Silver Nanoparticles on Carbon Nanotube by Chemical Reduction Method: Evaluation of Surface, Thermal and Optical Properties[J]. Superlattice Microst., 2012, 52: 50-62.

[20]

Song PX, Wen DS. Experimental Investigation of the Oxidation of Tin Nanoparticles[J]. J. Phys. Chem. C, 2009, 113: 13470-13476.

[21]

Chang GQ, Zheng X, Chen RY, et al. Silver Nanoparticles Filling in TiO2 Hollow Nanofibers by Coaxial Electrospinning[J]. Acta Phys.-Chim. Sin., 2008, 24(10): 1790-1796.

[22]

Wohlgemuth SA, White RJ, Willinger MG, et al. A One-pot Hydrothermal Synthesis of Sulfur and Nitrogen Doped Carbon Aerogels with Enhanced Electrocatalytic Activity in the Oxygen Reduction Reaction[J]. Green Chem., 2012, 14: 1515-1523.

[23]

Li YF. High Efficiency Conjugated Polymer Donor and Fullerence Derivative Acceptor Photovoltaic Materials for Polymer Solar Cells[J]. Polym. Bull., 2011, 11: 33-49.

[24]

Liu ZK, Li JH, Sun ZH, et al. The Application of Highly Doped Singlelayer Graphene as the Top Electrodes of Semitransparent Organic Solar Cells[J]. ACS Nano, 2012, 6(1): 810-818.

[25]

Konda RB, Mundle R, Mustafa H, et al. Surface Plasmon Excitation via Au Nanoparticles in n-CdSe/p-Si Heterojunction Diodes[J]. Appl. Phys. Lett., 2007, 91(19): 191111

[26]

Nche TF, Park TH, Oara N, et al. Plexcitonic Nanoparticles: Plasmonexciton Coupling in Nanoshell-J-aggregate Complexes[J]. Nano Lett., 2008, 8(10): 3481-3487.

[27]

Wu JL, Chen FC, Hsiao YS, et al. Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells[J]. ACS Nano, 2011, 5: 959-967.

[28]

Lee JH, Park JH, Kim JS, et al. High Efficiency Polymer Solar Cells with Wet Deposited Plasmonic Gold Nanodots[J]. Org. Electron., 2009, 10: 416-420.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/