Low temperature synthesis of amorphous La0.7Zn0.3MnO3 films grown on p+-Si substrates and its resistive switching properties

Qisong Chen , Hua Wang , Jiwen Xu , Changcheng Wei , Xiaowen Zhang , Ling Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 727 -730.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 727 -730. DOI: 10.1007/s11595-016-1437-1
Advanced Materials

Low temperature synthesis of amorphous La0.7Zn0.3MnO3 films grown on p+-Si substrates and its resistive switching properties

Author information +
History +
PDF

Abstract

Amorphous La0.7Zn0.3MnO3 (LZMO) films were deposited on p+-Si substrates by sol-gel method at low temperature of 450 °C. The Ag/LZMO/p+-Si device exhibits invertible bipolar resistive switching and the R HRS/R LRS was about 104-106 at room temperature which can be kept over 103 switching cycles. Better endurance characteristics were observed in the Ag/LZMO/p+-Si device, the V Set and the V Reset almost remained after 103 endurance switching cycles. According to electrical analyses, the conductor mechanism was in low resistor state (LRS) governed by the filament conductor and in the high state (HRS) dominated by the traps-controlled space-charge-limited current (SCLC) conductor.

Keywords

amorphous / La0.7Zn0.3MnO3 / bipolar / sol-gel

Cite this article

Download citation ▾
Qisong Chen, Hua Wang, Jiwen Xu, Changcheng Wei, Xiaowen Zhang, Ling Yang. Low temperature synthesis of amorphous La0.7Zn0.3MnO3 films grown on p+-Si substrates and its resistive switching properties. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(4): 727-730 DOI:10.1007/s11595-016-1437-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Waser R, Aono M. Nanoionics-based Resistive Switching Memorie[J]. Nature, 2007, 6: 833-839.

[2]

Waser R, Dittmann S G, Szot K. Redox-based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges[J]. Adv. Mater., 2009, 21: 2632-2663.

[3]

Kozicki MN, Mira P, Maria M. Nanoscale Memory Elements Based on Solid-State Elements[J]. IEEE Transactions on Nanotechnology, 2005, 4(3): 331-338.

[4]

Russo U, Kamalanathan D, Lelmini D, et al. Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory[J]. IEEE Trans. Electr. Dev., 2009, 56: 1040-1047.

[5]

Dong R, Wang Q, Chen LD, et al. Retention Behavior of the Electricpulse-induced Reversible Resistance Change Effect in Ag-La0.7Ca0.3MnO3-Pt Sandwiches[J]. Appl. Phys. Lett., 2005, 86: 172107-3.

[6]

Shang DS, Chen LD, Wang Q, et al. Reversible Multilevel Resistance Switching of Ag-La0.7Ca0.3MnO3-Pt Heterostructures[J]. J. Mater. Res., 2008, 23: 302-307.

[7]

Liu SQ, Wu NJ. Electric Pulse Induced Reversible Resistance Change Effect in Magnetoresistive Films[J]. Appl. Phys. Lett., 2000, 76: 2749-2751.

[8]

Beck A, Bednorz JG, Gerber C, et al. Reproducible Switching Effect in Thin Oxide Films for Memory Applications[J]. Appl. Phys. Lett., 2000, 77: 139-141.

[9]

Chang WY, Lai YC, Wu TB, et al. Unipolar Resistive Switching Characteristics of ZnO Thin Films for Nonvolatile Memory Applications[J]. Appl. Phys. Lett., 2008, 92: 022110-3.

[10]

Liu Q, Guan W, Long S, et al. Resistive Switching Memory Effect of ZrO2 Films with Zr+ Implanted[J]. Appl. Phys. Lett., 2008, 92: 012007-3.

[11]

Son JY, Shin YH. Direct Observation of Conducting Filaments on Resistive Switching of NiO Thin Film[J]. Appl. Phys. Lett., 2008, 92: 222106-3.

[12]

Seong TG, Choi KB, Seo IT, et al. Resistive Switching Properties of Amorphous Pr0.7Ca0.3MnO3 Films Grown on Indium Tin Oxide/Glass Substrste Using Pulsed Laser Deposition Method[J]. Appl. Phys. Lett., 2012, 100: 212111-4.

[13]

Jo SH, Kim KH, Lu W. High-density Crossbar Arrays Based on a Si Memristive System[J]. Nano Lett., 2009, 9: 870-874.

[14]

Liu DQ, Wang NN, Wang G, et al. Nonvolatile Bipolar Resistive Switching in Amorphous Sr-doped LaMnO3 Thin Films Deposited by Radio Frequency Magnetron Sputtering[J]. Appl. Phys. Lett., 2013, 102: 134105-3.

[15]

Scott JC, Bozano LD. Nonvolatile Memory Elements Based on Organic Materials[J]. Adv. Mater., 2007, 19: 1452-1463.

[16]

Bozano LD, Kean BW, Deline VR, et al. Mechanism for Bistability in Organic Memory Elements[J]. Appl. Phys. Lett., 2004, 84: 607-609.

[17]

Kim KM, Choi BJ, Shin YC, et al. Anode-interface Localized Filamentary Mechanism in Resistive Switching of TiO2 Thin Films[J]. Appl. Phys. Lett., 2007, 91: 012907-3.

[18]

Yang YC, Pan F, Liu Q, et al. Fully Room-temperature-fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application[J]. Nano Lett., 2009, 9(4): 1636-1643.

[19]

Luo JM, Lin SP, Zheng Y, et al. Nonpolar Resistive Switching in Mndoped BiFeO3 Thin Films by Chemical Solution Deposition[J]. Appl. Phys. Lett., 2012, 101: 062902-3.

[20]

Liu DQ, Wang NN, Wang G, et al. Programmable Metallization Cells Based on Amorphous La0.79Sr0.21MnO3 Thin Films for Memory Applications[J]. J. Alloys Compd., 2013, 580: 354-357.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/