Synthesis and bio-activities of poly (3,4-ethylenedioxythiophene) (PEDOT)/poly (styrene sulfonate) (PSS)/gelatin layer on indium tin oxide (ITO)-coated glass

Li Sui , Binbin Peng , Sijia Huang , Yan Wang , Lihua Ju

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (3) : 662 -670.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (3) : 662 -670. DOI: 10.1007/s11595-016-1426-4
Biomaterials

Synthesis and bio-activities of poly (3,4-ethylenedioxythiophene) (PEDOT)/poly (styrene sulfonate) (PSS)/gelatin layer on indium tin oxide (ITO)-coated glass

Author information +
History +
PDF

Abstract

Poly (3, 4-ethylenedioxythiophene) (PEDOT), together with its dopes, such as poly (styrene sulfonate) (PSS), has been acknowledged to have a wide range of biomedical applications as an important conducting polymer. In this study, gelatin can be polymerized into PEDOT/PSS polymers on indium tin oxide (ITO)-coated glass. PEDOT/PSS/gelatin layer on ITO-coated glass significantly decreases electrochemical impedance spectroscopy (EIS) and increases charge delivery capacity relative to the gelatin layer and bare ITO-coated glass, comparable to the PEDOT/PSS layer on ITO-coated glass. PEDOT/PSS/gelatin layer on ITO-coated glass enhances pheochromocytoma (PC 12) cell affinity, possesses a high biocompatibility and promotes PC 12 cell growth by delivery of electrical stimulation. These results suggest that gelatin can be incorporated into the PEDOT/PSS polymers through electrochemical polymerization and the PEDOT/PSS/gelatin layer on ITO-coated glass possesses high electrochemical and biological activities.

Keywords

poly (3,4-ethylenedioxythiophene) (PEDOT) / gelatin / electrochemistry / electrical stimulation / PC 12 cell

Cite this article

Download citation ▾
Li Sui, Binbin Peng, Sijia Huang, Yan Wang, Lihua Ju. Synthesis and bio-activities of poly (3,4-ethylenedioxythiophene) (PEDOT)/poly (styrene sulfonate) (PSS)/gelatin layer on indium tin oxide (ITO)-coated glass. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(3): 662-670 DOI:10.1007/s11595-016-1426-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poole-Warren L, Lovell N, Baek S, et al. Development of Bioactive Conducting Polymers for Neural Interfaces[J]. Expert Rev. Med. Devices, 2010, 7(1): 35-49.

[2]

Bendrea A D, Cianga L, Cianga I. Progress in the Field of Conducting Polymers for Tissue Engineering Applications[J]. J. Biomater. Appl., 2011, 26(1): 3-84.

[3]

Nambiar S, Yeow J T W. Conductive Polymer-based Sensors for Biomedical Applications[J]. Biosensors & Bioelectronics, 2011, 26(5): 1825-1832.

[4]

Ravichandran R, Sundarrajan S, Venugopal J R, et al. Applications of Conducting Polymers and Their Tissues in Biomedical Engineering[J]. J. R. Soc. Interface, 2010, 7: S 559-S 579.

[5]

Thaning E M, Asplund M L M, Nyberg T A, et al. Stability of Poly(3,4-ethylene dioxythiophene) Materials Intended for Implants[J]. J. Biomed. Mater. Res. Part B, 2010, 93B(2): 407-415.

[6]

Boretius T, Schuettler M, Stieglitz T. On the Stability of Polyethylenedioxythiopene as Coating Material for Active Neural Implants[J]. Artif. Organs, 2011, 35(3): 245-248.

[7]

Rozlosnik N. New Directions in Medical Biosensors Employing Poly(3,4-ethylenedioxy thiophene) Derivative-based Electrodes[J]. Analytical and Bioanalytical Chemistry, 2009, 395(3): 637-645.

[8]

Nikolou M, Malliaras G G. Applications of Poly (3,4-ethylenedioxythiophene) Doped with Poly(styrene sulfonic acid) Transistors in Chemical and Biological Sensors[J]. Chemical Record, 2008, 8(1): 13-22.

[9]

Chikar J A, Hendricks J L, Richardson-Burns S M, et al. The Use of a Dual PEDOT and RGD-functionalized Alginate Hydrogel Coating to Provide Sustained Drug Delivery and Improved Cochlear Implant Function[J]. Biomaterials, 2012, 33(7): 1982-1990.

[10]

Luo X, Matranga C, Tan S, et al. Carbon Nanotube Nanoreservior for Controlled Release of Anti-inflammatory Dexamethasone[J]. Biomaterials, 2011, 32(26): 6316-6323.

[11]

Wilks S J, Woolley A J, Ouyang L, et al. In Vivo Polymerization of Poly(3,4-ethylenedioxythiophene) (PEDOT) in Rodent Cerebral Cortex[C]. Conf. Proc. IEEE. Eng. Med. Biol. Soc., 2011

[12]

Hsiao Y S, Lin C C, Hsieh H J, et al. Manipulating Location, Polarity, and Outgrowth Length of Neuron-like Pheochromocytoma (PC-12) Cells on Patterned Organic Electrode Arrays[J]. Lab Chip., 2011, 11(21): 3674-3680.

[13]

Kim Y I, Kim H, Lee H. Effect of Solvent and Dopant on Poly(3,4-ethylenedioxythiophene) Thin Films by Atomic Force Microscope Lithography[J]. J. Nanosci. Nanotechnol., 2008, 8(9): 4757-4760.

[14]

Green R A, Lovell N H, Poole-Warren L A. Impact of Co-incorporating Laminin Peptide Dopants and Neurotrophic Growth Factors on Conducting Polymer Properties[J]. Acta. Biomater., 2010, 6(1): 63-71.

[15]

Green R A, Lovell N H, Poole-Warren L A. Cell Attachment Functionality of Bioactive Conducting Polymers for Neural Interfaces[J]. Biomaterials, 2009, 30(22): 3637-3644.

[16]

Li Y, Rodrigues J, Tomás H. Injectable and Biodegradable Hydrogels: Gelation, Biodegradation and Biomedical Applications[J]. Chem. Soc. Rev., 2012, 41(6): 2193-2221.

[17]

Sell S A, McClure M J, Garg K, et al. Electrospinning of Collagen/ Biopolymers for Regenerative Medicine and Cardiovascular Tissue Engineering[J]. Adv. Drug Deliv. Rev., 2009, 61(12): 1007-1019.

[18]

Young S, Wong M, Tabata Y, et al. Gelatin as a Delivery Vehicle for the Controlled Release of Bioactive Molecules[J]. J. Control Release, 2005, 109(1-3): 256-274.

[19]

Garg T, Singh O, Arora S, et al. Scaffold: a Novel Carrier for Cell and Drug Delivery[J]. Crit. Rev. Ther. Drug Carrier Syst., 2012, 29(1): 1-63.

[20]

Olsen D, Yang C, Bodo M, et al. Recombinant Collagen and Gelatin for Drug Delivery[J]. Adv. Drug Deliv. Rev., 2003, 55(12): 1547-1567.

[21]

Jurga M, Dainiak M B, Sarnowska A, et al. The Performance of Laminin-containing Cryogel Scaffolds in Neural Tissue Regeneration[J]. Biomaterials, 2011, 32(13): 3423-3434.

[22]

Martín-López E, Alonso F R, Nieto-Díaz M, et al. Chitosan, Gelatin and Poly(L-lysine) Polyelectrolyte-based Scaffolds and Films for Neural Tissue Engineering[J]. J. Biomater. Sci. Polym. Ed., 2012, 23(1-4): 207-232.

[23]

Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Differential Adhesiveness and Neurite-promoting Activity for Neural Cells of Chitosan, Gelatin, and Poly-L-lysine Films[J]. J. Biomater. Appl., 2012, 26(7): 791-809.

[24]

Ge D T, Mu J, Huang S Q, et al. Electrochemical Synthesis of Polypyrrole Nanowires in the Presence of Gelatin[J]. Synthetic Metals, 2011, 161(1-2): 166-172.

[25]

Green R A, Lovell N H, Wallace G G, et al. Conducting Polymers for Neural Interfaces: Challenges in Developing An Effective Long-term Implant[J]. Biomaterials, 2008, 29(24-25): 3393-3399.

[26]

Gomez N, Schmidt C E. Nerve Growth Factor-immobilized Polypyrrole: Bioactive Electrically Conducting Polymer for Enhanced Neurite Extension[J]. J. Biomed. Mater. Res. A, 2007, 81(1): 135-149.

[27]

Schmidt C E, Shastri V R, Vacanti J P, et al. Stimulation of Neurite Outgrowth Using An Electrically Conducting Polymer[J]. Proc. Natl. Acad. Sci. U S A, 1997, 94(17): 8948-8953.

[28]

Park K H, Jo E A, Na K. Heparin/Polypyrrole (PPy) Composite on Gold-coated Matrix for the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation[J]. Biotechnology and Bioprocess Engineering, 2007, 12(5): 463-469.

[29]

Ibrahim M, Mahmoud A A, Osman O, et al. Molecular Spectroscopic Analyses of Gelatin[J]. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2011, 81(1): 724-729.

[30]

GILES C H, McKAY R B. Studies in Hydrogen Bond Formation. XI. Reactions Between a Variety of Carbohydrates and Proteins in Aqueous Solutions[J]. J. Biol. Chem., 1962, 237: 3388-3392.

[31]

Peixoto N, Jackson K, Samiyi R, et al. Charge Storage: Stability Measures in Implantable Electrodes[J]. Conf. Proc. IEEE. Eng. Med. Biol. Soc., 2009, 2009: 658-661.

[32]

Blau A, Murr A, Wolff S, et al. Flexible, All-polymer Microelectrode Arrays for the Capture of Cardiac and Neuronal signals[J]. Biomaterials, 2011, 32(7): 1778-1786.

[33]

Lu Y, Li Y, Pan J, et al. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) Interpenetrating Polymer Networks for Improving Optrode-neural Tissue Interface in Optogenetics[J]. Biomaterials, 2012, 33(2): 378-394.

[34]

Smeets E F, von Asmuth E J, van der Linden C J, et al. A Comparison of Substrates for Human Umbilical Vein Endothelial Cell Culture[J]. Biotech. Histochem., 1992, 67(4): 241-250.

[35]

Green R A, Hassarati R T, Bouchinet L, et al. Substrate Dependent Stability of Conducting Polymer Coatings on Medical Electrodes[J]. Biomaterials, 2012, 33(25): 5875-5886.

[36]

Xiao Y, Li C M, Wang S, et al. Incorporation of Collagen in Poly(3,4-ethylenedioxythiophene) for A Bifunctional Film with High Bio-and Electrochemical Activity[J]. J. Biomed. Mater. Res. A, 2010, 92(2): 766-772.

[37]

Gordon T, Udina E, Verge V M, et al. Brief Electrical Stimulation Accelerates Axon Regeneration in the Peripheral Nervous System and Promotes Sensory Axon Regeneration in the Central Nervous System[J]. Motor Control, 2009, 13(4): 412-441.

[38]

Zanakis M F. Differential Effects of Various Electrical Parameters on Peripheral and Central Nerve Regeneration[J]. Acupunct. Electrother. Res., 1990, 15(3-4): 185-191.

[39]

Patel N, Poo M M. Orientation of Neurite Growth by Extracellular Electric Fields[J]. J. Neurosci., 1982, 2(4): 483-496.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/