Intrinsic orientation effect on the piezoelectric response of multi-domain 0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 crystals

Yang Xiang , Chuanwen Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (3) : 553 -556.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (3) : 553 -556. DOI: 10.1007/s11595-016-1409-5
Advanced Materials

Intrinsic orientation effect on the piezoelectric response of multi-domain 0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 crystals

Author information +
History +
PDF

Abstract

The crystal intrinsic orientation effect on the piezoelectric response of multi-domain 0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 (PIN-PMN-0.28PT) crystals was investigated by coordinate transformation method. The results indicate that crystal intrinsic orientation effect plays a crucial role in determining the piezoelectric properties of multi-domain crystals. Almost 58% and 69% of the transverse piezoelectric coefficients d 31 and d 32, respectively, and 67% longitudinal piezoelectric coefficient d 33 of multi-domain PIN-PMN-0.28PT crystals poled along [011] c originate from crystal intrinsic orientation effect. For [001] c poled multi-domain PIN-PMN-0.28PT crystals, intrinsic orientation effect contributes to the transverse and longitudinal piezoelectric coefficient at least 79% and 74%, respectively.

Keywords

single crystal / coordinate transformation / piezoelectric property

Cite this article

Download citation ▾
Yang Xiang, Chuanwen Chen. Intrinsic orientation effect on the piezoelectric response of multi-domain 0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 crystals. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(3): 553-556 DOI:10.1007/s11595-016-1409-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Haertling G H. Ferroelectric Ceramics: History and Technology[J]. J. Am. Ceram Soc., 1999, 82(4): 797-818.

[2]

Chan H W, Unsworth J. Simple Model for Piezoelectric Ceramic/Polymer 1-3 Composites Used in Ultrasonic Transducer Applications[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 1999, 36(4): 434-441.

[3]

Zhu J S, He L K. Study on Piezoelectric Actuator/Sensor Wave Propagation Based N-ondestructive Active Monitoring Method of Concrete Structures[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(3): 541-547.

[4]

Jin J M, Zhao C S. A Novel Traveling Wave Ultrasonic Motor Using a Bar Shaped Transducer[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2008, 23(6): 961-963.

[5]

Park S E, Shrout T R. Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals[J]. J. Appl. Phys., 1997, 82(4): 1804-1811.

[6]

Service R F. Shape-Changing Crystals Get Shifter[J]. Science, 1997, 275(28): 1878-1878.

[7]

Zhang S J, Luo J, Hackenberger W, et al. Characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 Ferroelectric Crystal with Enhanced Phase Transition Temperature[J]. J. Appl. Phys., 2008, 104(6): 064106-1.

[8]

Li X Z, Wang Z J, He C, et al. Growth and Piezo-/Ferroelectric Properties of PIN-PMN-PT Single Crystals[J]. J. Appl. Phys., 2012, 111(3): 034105-1.

[9]

Chen H B, Liang Z, Luo L H, et al. Bridgman Growth, Crystallographic Characterization and Electrical Properties of Relaxor-Based Ferroelectric Single Crystal PIMNT[J]. J. Cryst. Growth, 2012, 518: 63-67.

[10]

Xu G S, Chen C, Yang D F, et al. Growth and Electrical Properties of Large Size Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 Crystals Prepared by the Vertical Bridgman Technique[J]. Appl. Phys. Lett., 2007, 90: 032901-1.

[11]

Viehland D, Jang S J, Cross L E, et al. Freezing of the Polarization Fluctuations in Lead Magn-Esium Niobate Relaxors[J]. J. Appl. Phys., 1990, 68(6): 2916-2921.

[12]

Finkel P, Robinson H, Stace J, et al. Study of Phase Transitions in Ternary Lead Indium Niob ate-Lead Magnesium Niobate-Lead Titanate Relaxor Ferroelectric Morphotropic Single Crystals[J]. Appl. Phys. Lett., 2010, 97: 122903-1.

[13]

Blinc R, Dolinsek J, Gregorovic A, et al. NMR and the Spherical Random Bond–Random Field Model of Relaxor Ferroelectrics[J]. J. Phys. Chem. Solids, 2000, 61(2): 177-183.

[14]

Pirc R, Blinc R. Spherical Random-Bond-Random-Field Model of Relaxor Ferroelectrics[J]. Phys. Rev. B, 1999, 60(19): 13470-13478.

[15]

Tinte S, Burton B P, Cockayne E, et al. Origin of the Relaxor State in Pb(BxB1-x)O3 Perovskites[J]. Phys. Rev. Lett., 2006, 97(13): 137601-1.

[16]

Cady W G. Piezoelectricity[M], 1964 New York: Dover Publications.

[17]

Liu X Z, Zhang S J, Luo J, et al. A Complete Set of Material Properties of Single Domain 0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 Single Crystals[J]. Appl. Phys. Lett., 2010, 96(1): 012907-1.

[18]

Liu X Z, Zhang S J, Luo J, et al. Erratum: “A Complete Set of Material Properties of Single Domain 0.26Pb(In1/2Nb1/2)O3–0.46Pb(Mg1/3 Nb2/3) O3–0.28PbTiO3 Single Crystals”[J]. Appl. Phys. Lett., 2010, 97(1): 019901-1.

[19]

Sun E W, Zhang S J, Luo J, et al. Elastic, Dielectric, and Piezoelectric Constants of Pb(In1/2 Nb1/2)O3–Pb(1/3Nb2/3)O3–PbTiO3 Single Crystal Poled along [011]c[J]. Appl. Phys. Lett., 2010, 97(3): 032902-1.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/