Controllable preparation and superior rate performance of spinel LiMn2O4 hollow microspheres as cathode material for lithium-ion batteries

Shiyao Wang , Liang Xiao , Yonglin Guo , Bohua Deng , Deyu Qu , Zhizhong Xie

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (3) : 503 -508.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (3) : 503 -508. DOI: 10.1007/s11595-016-1399-3
Advanced Materials

Controllable preparation and superior rate performance of spinel LiMn2O4 hollow microspheres as cathode material for lithium-ion batteries

Author information +
History +
PDF

Abstract

Spinel LiMn2O4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of MnCO3 microspheres precursors and following solid reactions with lithium salts. Scanning electron microscopy (SEM) investigations demonstrate that the microsphere morphology and hollow structure of precursors are inherited. The effect of hollow structure properties of as-prepared LiMn2O4 on their performance as cathode materials for lithium-ion batteries has been studied. Electrochemical performance tests show that LiMn2O4 hollow microspheres with small wall thickness exhibit both superior rate capability and better cycle performance than LiMn2O4 solid microspheres and LiMn2O4 hollow microspheres with thick wall. The LiMn2O4 hollow microspheres with thin wall have discharge capacity of 132.7 mA·h·g-1 at C/10 (14.8 mA·g-1) in the first cycle, 94.1% capacity retention at C/10 after 40 cycles and discharge capacity of 116.5 mAh·g-1 at a high rate of 5C. The apparent lithium-ion diffusion coefficient (D app) of as-prepared LiMn2O4 determined by capacity intermittent titration technique (CITT) varies from 10-11 to 10-8.5 cm2·s-1 showing a regular “W” shape curve plotted with test voltages. The Dapp of LiMn2O4 hollow microspheres with thin wall has the largest value among all the prepared samples. Both the superior rate capability and cycle stability of LiMn2O4 hollow microspheres with thin wall can be ascribed to the facile ion diffusion in the hollow structures and the robust of hollow structures during repeated cycling.

Keywords

hollow microsphere / spinel LiMn2O4 / spherical MnCO3 / rate capability / diffusion coefficient

Cite this article

Download citation ▾
Shiyao Wang, Liang Xiao, Yonglin Guo, Bohua Deng, Deyu Qu, Zhizhong Xie. Controllable preparation and superior rate performance of spinel LiMn2O4 hollow microspheres as cathode material for lithium-ion batteries. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(3): 503-508 DOI:10.1007/s11595-016-1399-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee K T, Cho J. Roles of Nanosize in Lithium Reactive Nanomaterials for Lithium Ion Batteries[J]. Nano Today, 2011, 6(1): 28-41.

[2]

Zhang Q, Uchaker E, Candelaria S L, et al. Nanomaterials for Energy Conversion and Storage[J]. Chem. Soc. Rev., 2013, 42(7): 3127-3171.

[3]

Xia Y Y, Yoshio M. Optimization of Spinel Li1+xMn2-yO4 as a 4 V Li-Cell Cathode in Terms of a Li-Mn-O Phase Diagram[J]. J. Electrochem. Soc., 1997, 144(12): 4186-4194.

[4]

Amatucci G, Tarascon J M. Optimization of Insertion Compounds Such as LiMn2O4 for Li-ion Batteries[J]. J. Electrochem. Soc., 2002, 149(12): K31-K46.

[5]

Hosono E, Kudo T, Honma I, et al. Synthesis of Single Crystalline Spinel LiMn2O4 Nanowires for a Lithium Ion Battery with High Power Density[J]. Nano Lett., 2009, 9(3): 1045-1051.

[6]

Lee H W, Muralidharan P, Ruffo R, et al. Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries[J]. Nano Lett., 2010, 10(10): 3852-3856.

[7]

Luo J Y, Xiong H M, Xia Y Y. LiMn2O4 Nanorods, Nanothorn Microspheres, and Hollow Nanospheres as Enhanced Cathode Materials of Lithium Ion Battery[J]. J. Phys. Chem. C, 2008, 112(31): 12051-12057.

[8]

Yang Y, Xie C, Ruffo R, et al. Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4[J]. Nano Lett., 2009, 9(12): 4109-4114.

[9]

Luo J Y, Wang Y G, Xiong H M, et al. Ordered Mesoporous Spinel LiMn2O4 by a Soft-chemical Process as a Cathode Material for Lithium-ion Batteries[J]. Chem. Mater., 2007, 19(19): 4791-4795.

[10]

Jiao F, Bao J, Hill A H, et al. Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries[J]. Angew. Chem. Int. Edit., 2008, 47(50): 9711-9716.

[11]

Park B G, Kim S, Kim I D, et al. Structural and Electrochemical Performance of Three-dimensional LiMn2O4 Thin Film[J]. J. Mater. Sci., 2010, 45(14): 3947-3953.

[12]

Sim C M, Choi S H, Kang Y C. Superior Electrochemical Properties of LiMn2O4 Yolk-shell Powders Prepared by a Simple Spray Pyrolysis Process[J]. Chem. Commun., 2013, 49(53): 5978-5980.

[13]

Taniguchi I, Fukuda N, Konarova M. Synthesis of Spherical LiMn2O4 Microparticles by a Combination of Spray Pyrolysis and Drying Method[J]. Powder Technol., 2008, 181(3): 228-236.

[14]

Liang S, Yi J, Pan A. Synthesis of Double-Shelled LiMn2O4 Hollow Microspheres with Enhanced Electrochemical Performance for Lithium Ion Batteries[J]. Int. J. Electrochem. Sci., 2013, 8(5): 6535-6543.

[15]

Liu W, Liu J, Chen K, et al. Enhancing the Electrochemical Performance of the LiMn2O4 Hollow Microsphere Cathode with a LiNi0.5Mn1.5O4 Coated Layer[J]. Chem. Eur. J., 2014, 20(3): 824-830.

[16]

Zhu C, Saito G, Akiyama T. A New CaCO3-template Method to Synthesize Nanoporous Manganese Oxide Hollow Structures and Their Transformation to High-performance LiMn2O4 Cathodes for Lithiumion Batteries[J]. J. Mater. Chem. A, 2013, 1(24): 7077-7082.

[17]

Zhou L, Zhou X, Huang X, et al. Designed Synthesis of LiMn2O4 Microspheres with Adjustable Hollow Structures for Lithium-ion Battery Applications[J]. J. Mater. Chem. A, 2013, 1(3): 837-842.

[18]

Xiao X L, Lu J, Li Y D. LiMn2O4 Microspheres: Synthesis, Characterization and Use As a Cathode in Lithium Ion Batteries[J]. Nano Research, 2010, 3(10): 733-737.

[19]

Luo J Y, Cheng L, Xia Y Y. LiMn2O4 Hollow Nanosphere Electrode Material with Excellent Cycling Reversibility and Rate Capability[J]. Electrochem. Commun., 2007, 9(6): 1404-1409.

[20]

Ding Y L, Zhao X B, Xie J, et al. Double-shelled Hollow Microspheres of LiMn2O4 for High-performance Lithium Ion Batteries[J]. J. Mater. Chem., 2011, 21(26): 9475-9479.

[21]

Xiao L, Guo Y, Qu D, et al. Influence of Particle Sizes and Morphologies on the Electrochemical Performances of Spinel LiMn2O4 Cathode Materials[J]. J. Power Sources, 2013, 225: 286-292.

[22]

Fei J B, Cui Y, Yan X H, et al. Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment[J]. Adv. Mater., 2008, 20(3): 452-456.

[23]

Xia Y Y, Takeshige H, Noguchi H, et al. Studies on an Li-Mn-O Spinel System (obtained by melt-impregnation) as a Cathode for 4 V Lithium Batteries Part 1. Synthesis and Electrochemical Behaviour of LixMn2O4[J]. J. Power Sources, 1995, 56(1): 61-67.

[24]

He X M, Li J J, Cai Y, et al. Preparation of Spherical Spinel LiMn2O4 Cathode Material for Lithium Ion Batteries[J]. J. Solid State Electrochem., 2005, 9(6): 438-444.

[25]

Tang X C, Song X W, Shen P Z, et al. Capacity Intermittent Titration Technique (CITT): A Novel Technique for Determination of Li+ Solid Diffusion Coefficient of LiMn2O4[J]. Electrochim. Acta, 2005, 50(28): 5581-5587.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/