Effect of MnO2 on properties of SiC-mullite composite ceramics for solar sensible thermal storage

Xiaohong Xu , Xinbin Lao , Jianfeng Wu , Yaxiang Zhang , Xiaoyang Xu , Kun Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (3) : 491 -495.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (3) : 491 -495. DOI: 10.1007/s11595-016-1397-5
Advanced Materials

Effect of MnO2 on properties of SiC-mullite composite ceramics for solar sensible thermal storage

Author information +
History +
PDF

Abstract

For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, andalusite, α-Al2O3 as the starting materials with non-contact graphite-buried sintering method. Phase composition and microstructure of the composites were investigated by XRD and SEM, and the effect of MnO2 on the properties of SiC composites was studied. Results indicated that samples SM1 with 0.2 wt% MnO2 addition achieved the optimum properties: bending strength of 70.96 MPa, heat capacity of 1.02 J·(g·K)-1, thermal conductivity of 9.05 W·(m·K)-1. Proper addition of MnO2 was found to weaken the volume effect of the composites and improve the thermal shock resistance with an increased rate of 27.84% for bending strength after 30 cycles of thermal shock (air cooling from 1 100 °C to RT).

Keywords

SiC-mullite composite ceramics / MnO2 / solar sensible thermal storage / non-contact graphite-buried sintering / thermal shock resistance

Cite this article

Download citation ▾
Xiaohong Xu, Xinbin Lao, Jianfeng Wu, Yaxiang Zhang, Xiaoyang Xu, Kun Li. Effect of MnO2 on properties of SiC-mullite composite ceramics for solar sensible thermal storage. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(3): 491-495 DOI:10.1007/s11595-016-1397-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu J F, Fang B Z, Xu X H, et al. Preparation and Characterization of Alumina-Silicon Carbide-Zirconia Thermal Storage Ceramics for Solar Thermal Power Generation[J]. J. Chin. Ceram. Soc., 2013, 41: 1063-1069.

[2]

Xu X H, Lao X B, Wu J F, et al. Preparation and Performance Study of Sialon-Si3N4-SiC Composite Ceramics for Concentrated Solar Power[J]. Int. J. Appl. Ceram. Technol., 2015, 12: 949-956.

[3]

Mills D. Advances in Solar Thermal Electricity Technology[J]. Solar. Energ., 2004, 76: 19-31.

[4]

Tian Y, Zhao C Y. A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications[J]. Appl. Energ., 2013, 104: 538-553.

[5]

Wu J F, Leng G H, Xu X H, et al. In-situ Synthesis of a Cordierite-Andalusite Composite for Solar Thermal Storage[J]. Solar. Energ. Mater. Solar. Cells, 2013, 108: 9-16.

[6]

Pincemin S, Olives R, Py X, et al. Highly Conductive Composites Made of Phase Change Materials and Graphite for Thermal Storage[J]. Solar. Energ. Mater. Solar. Cells., 2008, 92: 603-613.

[7]

Xu X H, Zhao F, Wu J F, et al. Research on Microstructure and Thermal Shock Behavior of Al2O3/SiC Composite Ceramics Used in Solar Thermal Power[J]. J. Wuhan. Univ. Technol., 2009, 31: 8-11.

[8]

Samanta A K, Dhargupta K K, Ghatak S. In-situ Development of SiC-Mullite Composites in Ambient Atmosphere from SiC and Alhydroxyhydrogel Powder Precursor[J]. J. Mater. Sci. Lett., 2001, 20: 2077-2080.

[9]

Xu X H, Rao Z G, Wu J F, et al. In-situ Synthesized Mullite Bonded Silicon Carbide Ceramics Used in Solar Heat Receiver[J]. J. Chin. Ceram. Soc., 2014, 42: 869-876.

[10]

Naghizadeh R, Golestani-fard F, Rezaie H R. Stability and Phase Evolution of Mullite in Reducing Atmosphere[J]. Mater. Charact., 2011, 62: 540-544.

[11]

Xu X H, Lao X B, Wu J F, et al. Synthesis and Characterization of Al2O3/SiC Composite Ceramics via Carbothermal Reduction of Aluminosilicate Precursor for Solar Sensible Thermal Storage[J]. J. Alloys. Compounds., 2016, 662: 126-137.

[12]

Ma X, Yao X, Hua S D, et al. Effects of MnO2 and Fe2O3 on Microstructure and Crush Resistance of Alumina Matrix Fracturing Proppant[J]. J. Chin. Ceram Soc., 2009, 37: 280-284.

[13]

Li J M, Long S G. Effect of Compound Additives on Sinterability and Thermal Shock Resistance of Alumina Ceramics[J]. Powder. Metall. Technol., 2009, 27: 273-276.

[14]

Wu J F, Liu M, Xu X H, et al. Preparation and Thermal Properties of SiC Based Solar Heat Absorbing Ceramic[J]. J. Chin. Ceram. Soc., 2011, 40: 1685-1692.

[15]

Xu X H, Xu X Y, Wu J F, et al. Effect of Dolomite and Spodumene on the Performances of Andalusite Composite Ceramics for Solar Heat Transmission Pipeline[J]. Ceram. Int., 2015, 41: 11861-11869.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/