Composition dependence of the thermal behavior, morphology and properties of biodegradable PBS/PTMO segment block copolymer

Yong Huang , Junhong Liu , Tao Zhou , Aimin Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 219 -226.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 219 -226. DOI: 10.1007/s11595-016-1355-2
Biomaterials

Composition dependence of the thermal behavior, morphology and properties of biodegradable PBS/PTMO segment block copolymer

Author information +
History +
PDF

Abstract

A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate) (PBS) as hard segment and poly (tetramethylene oxide) (PTMO, M n=1 000 g/mol) as soft segment were synthesized. The composition dependence of thermal behavior, morphology and mechanical properties was investigated by differential scanning calorimetry (DSC), atomic force microscopy (AFM), and tensile testing. The crystallization temperature (T c) and melting temperature (T m) of the PBS block within poly(ether-ester)s decrease steadily at first, but decrease sharply with PTMO content above 50 wt%. Two crystallization peaks were detected for PTMO in PBSPTMO60 sample, suggesting the occurrence of fractionated crystallization. The crystallization enthalpies (ΔH c) and melting enthalpies (ΔH m) of PBS block decrease at first, then increase as PTMO content increases further. AFM has demonstrated that phase-separated morphology transforms from a phase of continuous hard matrix to one of continuous soft matrix containing isolated hard domain as PTMO content is increased. Finally, the results of tensile testing show that the poly (ether-ester)s present the behavior of plastics when PTMO content is below 40 wt%, and of thermoplastic elastomers with PTMO content above 50 wt%. By varying the composition of copolymer, the aliphatic poly (ether-ester)s plastics, or especially biodegradable aliphatic poly(ether-ester)s thermoplastic elastomers can be obtained.

Keywords

poly(ether-ester)s / poly(butylene succinate) / poly (tetramethylene oxide) / thermoplastic elastomers / biodegradable polymer

Cite this article

Download citation ▾
Yong Huang, Junhong Liu, Tao Zhou, Aimin Zhang. Composition dependence of the thermal behavior, morphology and properties of biodegradable PBS/PTMO segment block copolymer. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 219-226 DOI:10.1007/s11595-016-1355-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pepic D, Zagar E, Zigon M. Synthesis and Characterization of Biodegradable Aliphatic Copolyesters with Poly (ethylene oxide) Soft Segments[J]. Eur. Polym. J., 2008, 44(3): 904-917.

[2]

Nikolic M S, Poleti D, Djonlagic J. Synthesis and Characterization of Biodegradable Poly(butylene succinate-co-butylene fumarate)s[J]. Eur. Polym. J., 2003, 39(11): 2 183-2 192.

[3]

Ihn K J, Yoo E S, Im S S. Structure and Morphology of Poly (tetramethylene succinate)[J]. Macromolecules, 1995, 28(7): 2 460-2 464.

[4]

Han Y K, Kim S R, Kim J. Preparation and Characterization of High Molecular Weight Poly(butylene succinate)[J]. Macromolecular Research, 2002, 10(2): 108-114.

[5]

Nagata M, Kiyotsukuri T, Takeuchi S, et al. Hydrolytic Degradation of Aliphatic Polyesters Copolymerized with Poly(ethylene glycol)s[J]. Polymer International, 1997, 42: 33-38.

[6]

Gan Z T, Jim F, Li M, et al. Enzymatic Biodegradation of Poly(ethylene oxide-b-e-caprolactone) Diblock Copolymer and Its Potential Biomedical Applications[J]. Macromolecules, 1999, 32(3): 590-594.

[7]

Li J, Li X, Ni X P, et al. Synthesis and Characterization of New Biodegradable Amphiphilic Poly(ethylene oxide)-b-Poly[(R)-3-hydroxy butyrate]-b-Poly(ethylene oxide) Triblock Copolymers[J]. Macromolecules, 2003, 36(8): 2 661-2 667.

[8]

Chen D, Chen H J, Wang B S. Morphology and Biodegradation of Microspheres of Polyester-Polyether Block Copolymer Based on Polycaprolactone/Polylactide/Poly (Ethylene Oxide)[J]. Polymer International, 2000, 49: 269-276.

[9]

Yao F L, Bai Y, Zhou Y T, et al. Synthesis and Characterization of Multiblock Copolymers Based on L-lactic Acid, Citric Acid, and poly(Ethylene Glycol)[J]. Polym. Sci: Polym. Chem., 2003, 41(13): 2 073-2 081.

[10]

Deschamps A A, Grijpma D W, Feijen J. Poly(Ethylene Oxide)/ Poly(Butylene Terephthalate) Segmented Block Copolymers: the Effect of Copolymer Composition on Physical Properties and Degradation Behavior[J]. Polymer, 2001, 42(23): 9 335-9 345.

[11]

Bezemer J M, Grijpma D W, Dijkstra P J, et al. A Controlled Release System for Proteins Based on Poly(ether ester) Block-copolymers: Polymer Network Characterization[J]. J. Control. Rel., 1999, 62(3): 393-405.

[12]

Gabriëlse W, Soliman M, Dijkstra K. Microstructure and Phase Behavior of Block Copoly(ether ester) Thermoplastic Elastomers[J]. Macromolecules, 2001, 34(6): 1 685-1 693.

[13]

Jovanovic D, Nikolic M S, Djonlagic J. Synthesis and Characterisation of Biodegradable Aliphatic Copolyesters with Hydrophilic Soft Segments[J]. J. Serb. Chem. Soc., 2004, 69(12): 1 013-1 028.

[14]

Pepic D, Nikolic M S, Djonlagic J. Synthesis and Characterization of Biodegradable Aliphatic Copolyesters with Poly(Tetramethylene Oxide) Soft Segments[J]. J. Appl. Polym. Sci., 2007, 106(3): 1 777-1 786.

[15]

Lee H S, Park H D, Cho C K. Domain and Segment Orientation Behavior of PBS-PTMG Segmented Block Copolymers[J]. J. Appl. Polym. Sci., 2000, 77: 699-709.

[16]

Park Y H, Cho C G. Synthesis and Characterization of Poly [(Butylene Succinate)-co-(Butylene Terephthalate)]-b-Poly (Tetramethylene Glycol) Segmented Block Copolymer[J]. J. Appl. Polym. Sci., 2001, 79: 2 067-2 075.

[17]

Yang F, Qiu Z B. Miscibility and Crystallization Behavior of Biodegradable Poly(butylene succinate)/Tannic Acid Blends[J]. Ind. Eng. Chem. Res., 2011 11 970-11 974.

[18]

Wang X H, Zhou J J, Li L. Multiple melting Behavior of Poly (butylene succinate)[J]. Eur. Polym. J., 2007, 43: 3 163-3 170.

[19]

Qiu Z B, Komur M, Ikehara T, et al. DSC and TMDSC Study of Melting Behaviour of Poly(butylene succinate) and Poly(ethylene succinate)[J]. Polymer, 2003, 44(26): 7 781-7 785.

[20]

Miyata T, Masuko T. Crystallization Behaviour of Poly (tetramethylene succinate)[J]. Polymer, 1998, 39(6): 1 399-1 404.

[21]

Castillo R V, Müller A J, Raquez J M, et al. Crystallization Kinetics and Morphology of Biodegradable Double Crystalline PLLA-b-PCL Diblock Copolymers[J]. Macromolecules, 2010, 43(9): 4 149-4 160.

[22]

Nojima S C, Fukagawa Y M, Ikeda H S. Interactive Crystallization of a Strongly Segregated Double Crystalline Block Copolymer with Close Crystallizable Temperatures[J]. Macromolecules, 2009, 42(24): 9 515-9 522.

[23]

He Y, Zhu B, Kai W F, et al. Nanoscale-confined and Fractional Crystallization of Poly (Ethylene Oxide) in the Interlamellar Region of Poly (Butylene Succinate)[J]. Macromolecules, 2004, 37(9): 3 337-3 345.

[24]

He Y, Zhu B, Kai W, et al. Effects of Crystallization Condition of Poly (butylene succinate) Component on the Crystallization of Poly (ethylene oxide) Component in Their Miscible Blends[J]. Macromolecules, 2004, 37(21): 8 050-8 056.

[25]

Castillo R V, Müller A J. Crystallization and Morphology of Biodegradable or Biostable Single and Double Crystalline Block Copolymers[J]. Prog. Polym. Sci., 2009, 34(6): 516-560.

[26]

Müller A J, Balsamo V, Arnal M L. Nucleation and Crystallization in Diblock and Triblock copolymers[J]. Adv. Polym. Sci., 2005, 190: 1-63.

[27]

Sun J R, Hong Z K, Yang L X, et al. Study on Crystalline Morphology of Poly(l-lactide)-Poly(ethylene glycol) Diblock Copolymer[J]. Polymer, 2004, 45(17): 5 969-5 977.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/