Crystallization kinetics of a high-zirconium-based glassy alloy: A DSC study

Nengbin Hua , Wenzhe Chen , Xiaoli Liu , Tao Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 191 -196.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 191 -196. DOI: 10.1007/s11595-016-1351-6
Metallic Materials

Crystallization kinetics of a high-zirconium-based glassy alloy: A DSC study

Author information +
History +
PDF

Abstract

The non-isothermal and isothermal crystallization kinetics of Zr72.5Al10Fe17.5 glassy alloy was investigated using differential scanning calorimeter (DSC). Under non-isothermal heating condition, the primary phase in the initial crystallization is Zr6Al2Fe phase and the final crystallized products consist of Zr6Al2Fe, Zr2Fe and a-Zr phases. The apparent activation energy for crystallization estimated using the Kissinger method is 342.1 ± 8.1 kJ/mol. The local activation energy decreased with the increase in the crystallization volume fraction during nonisothermal crystallization. Under isothermal heating condition, the average Avrami exponent of about 2.76 implies a mainly diffusion-controlled three-dimensional growth with an increasing nucleation rate. The local activation energy for isothermal crystallization shows a different variation trend from that for nonisothermal crystallization, indicating different nucleation-and-growth mechanisms for the two crystallizaiton conditions.

Keywords

glassy alloys / crystallization / activation energy / avrami exponent

Cite this article

Download citation ▾
Nengbin Hua, Wenzhe Chen, Xiaoli Liu, Tao Zhang. Crystallization kinetics of a high-zirconium-based glassy alloy: A DSC study. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 191-196 DOI:10.1007/s11595-016-1351-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang W H, Dong C, Shek C H. Bulk Metallic Glasses[J]. Mater. Sci. Eng. R, 2004, 44(2-3): 45-89.

[2]

Inoue A, Zhang T. Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method[J]. Mater. Trans. JIM., 1996, 37(2): 185-187.

[3]

Lou H B, Wang X D, Xu F, et al. 73 mm-diameter Bulk Metallic Glass Rod by Copper Mould Casting[J]. Appl. Phys. Lett., 2011, 99(5): 051910

[4]

Hua N B, Li R, Wang H, et al. Formation and Mechanical Properties of Ni-free Zr-based Bulk Metallic Glasses[J]. J. Alloys Compd., 2011, 509(S1): S175-178.

[5]

Hua N B, Pang S J, Li Y, et al. Ni-and Cu-free Zr-Al-Co-Ag Bulk Metallic Glasses with Superior Glass-forming Ability[J]. J. Mater. Res., 2011, 26(4): 539-546.

[6]

Köster U, Meinhsrdt J, Roos S, et al. Formation of Quasicrystals in Bulk Glass Forming Zr-Cu-Ni-Al Alloys[J]. Appl. Phys. Lett., 1996, 69(2): 179-181.

[7]

Kim Y H, Inoue A, Masumoto T. Ultrahigh Tensile Strengths of Al88Y2Ni9M1 (M=Mn or Fe) Amorphous Alloys Containing Finely Dispersed Fcc-Al Particles[J]. Mater. Trans. JIM., 1990, 31(8): 747-749.

[8]

Wang J F, Li R, Hua N B, et al. Ternary Fe-P-C Bulk Metallic Glass with Good Soft-magnetic and Mechanical Properties[J]. Scripta Mater., 2011, 65(6): 536-539.

[9]

Zhuang Y X, Duan T F, Shi H Y. Calorimetric Study of Non-isothermal Crystallization Kinetics of Zr60Cu20Al10Ni10 Bulk Metallic Glass[J]. J. Alloys Compd., 2011, 509(37): 9 019-9 025.

[10]

An W K, Cai A H, Li J H, et al. Glass Formation and Non-isothermal Crystallization of Zr62.5Al12.1Cu7.95Ni17.45 Bulk Metallic Glass[J]. J. Non-Cryst. Solids, 2009, 355(34-36): 1 703-1 706.

[11]

Patel A T, Shevde H R, Pratap A. Thermodynamics of Zr52.5Cu17.9Ni14.6Al10Ti5 Bulk Metallic Glass Forming Alloy[J]. J. Therm. Anal. Calorim., 2012, 107(1): 167-170.

[12]

Savalia R T, Lad K N, Pratap A, et al. Study of Formation of Nanoquasicrystals and Crystallization Kinetics of Zr-Al-Ni-Cu Metallic Glass[J]. J. Therm. Anal. Calorim., 2004, 78(3): 745-751.

[13]

Yokoyama Y, Fujita K, Yavari A R, et al. Malleable Hypoeutectic Zr-Ni-Cu-Al Bulk Glassy Alloys with Tensile Plastic Elongation at Room Temperature[J]. Philos. Mag. Lett., 2009, 89(5): 322-334.

[14]

Hui X, Liu S N, Pang S J, et al. High-zirconium-based Bulk Metallic Glasses with Large Plasticity[J]. Scripta Mater., 2010, 63(2): 239-242.

[15]

Hua N B, Li R, Wang J F, et al. Biocompatible Zr-Al-Fe Bulk Metallic Glasses with Large Plasticity[J]. Sci. China-Phys. Mech. Astron., 2012, 55(9): 1 664-1 669.

[16]

Hua N B, Huang L, He W, et al. A Ni-free High-zirconium-based Bulk Metallic Glass with Enhanced Plasticity and Biocompatibility[J]. J Non-Cryst. Solids, 2013, 376: 133-138.

[17]

Raghavan V. Al-Fe-Zr (Aluminum-Iron-Zirconium)[J]. J. Phase Equilib. Diff., 2006, 27(3): 284-287.

[18]

Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29(11): 1 702-1 706.

[19]

Johnson W A, Mehl R F. Reaction Kinetics in Processes of Nucleation and Growth[J]. Trans. Am. Inst. Min. Metall. Pet. Eng., 1939, 135(54): 416-462.

[20]

Ranganathan S, Heimendahi M V. The Three Activation Energies with Isothermal Transformations: Applications to Metallic Glasses[J]. J. Mater. Sci., 1981, 16(9): 2 401-2 404.

[21]

Liu L, Wu Z F, Zhang J. Crystallization Kinetics of Zr55Cu30Al10Ni5 Bulk Amorphous Alloy[J]. J. Alloys Compd., 2002, 339(1-2): 90-95.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/