Crystallization kinetics of a high-zirconium-based glassy alloy: A DSC study
Nengbin Hua , Wenzhe Chen , Xiaoli Liu , Tao Zhang
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 191 -196.
Crystallization kinetics of a high-zirconium-based glassy alloy: A DSC study
The non-isothermal and isothermal crystallization kinetics of Zr72.5Al10Fe17.5 glassy alloy was investigated using differential scanning calorimeter (DSC). Under non-isothermal heating condition, the primary phase in the initial crystallization is Zr6Al2Fe phase and the final crystallized products consist of Zr6Al2Fe, Zr2Fe and a-Zr phases. The apparent activation energy for crystallization estimated using the Kissinger method is 342.1 ± 8.1 kJ/mol. The local activation energy decreased with the increase in the crystallization volume fraction during nonisothermal crystallization. Under isothermal heating condition, the average Avrami exponent of about 2.76 implies a mainly diffusion-controlled three-dimensional growth with an increasing nucleation rate. The local activation energy for isothermal crystallization shows a different variation trend from that for nonisothermal crystallization, indicating different nucleation-and-growth mechanisms for the two crystallizaiton conditions.
glassy alloys / crystallization / activation energy / avrami exponent
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
/
| 〈 |
|
〉 |