Formation and mechanical properties of Zr-Nb-Cu-Ni-Al-Lu bulk glassy alloys with superior glass-forming ability

Xiangjin Zhao , Wei Liu , Li Liu , Tao Zhang , Shujie Pang , Chaoli Ma

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 186 -190.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 186 -190. DOI: 10.1007/s11595-016-1350-7
Metallic Materials

Formation and mechanical properties of Zr-Nb-Cu-Ni-Al-Lu bulk glassy alloys with superior glass-forming ability

Author information +
History +
PDF

Abstract

Glass-forming ability (GFA) and mechanical properties of (Zr0.58Nb0.03Cu0.16Ni0.13Al0.10)100-xLu x (x = 0-3 at%) alloys have been investigated. The GFA of Zr58Nb3Cu16Ni13Al10 alloy is dramatically enhanced by adding Lu. The (Zr0.58Nb0.03Cu0.16Ni0.13Al0.10)98Lu2 alloy possesses the highest GFA in the studied Zr-Nb-Cu-Ni-Al-Lu alloys, with its critical diameter for glass formation reaching 20 mm by copper-mould casting method, while that of the Lu-free Zr58Nb3Cu16Ni13Al10 alloy is 7 mm. The critical diameters of (Zr0.58Nb0.03Cu0.16Ni0.13Al0.10)100-xLux (x = 1 at% and 3 at%) alloys are 15 mm and 12 mm, respectively. The Lu addition to Zr58Nb3Cu16Ni13Al10 alloy induces the change of initial crystallization phases from face-centred-cubic Zr2Ni and tetragonal Zr2Ni phases for the Lu-free Zr58Nb3Cu16Ni13Al10 alloy to an icosahedral quasi-crystalline phase for the Lu-doped alloys, which may be the origin for the enhanced GFA of the Lu-doped alloys. The compressive fracture strength and plastic strain of the bulk glassy (Zr0.58Nb0.03Cu0.16Ni0.13Al0.10)98Lu2 alloy are 1 610 MPa and 1.5%, respectively.

Keywords

metallic glass / zirconium-based alloy / glass-forming ability / mechanical properties

Cite this article

Download citation ▾
Xiangjin Zhao, Wei Liu, Li Liu, Tao Zhang, Shujie Pang, Chaoli Ma. Formation and mechanical properties of Zr-Nb-Cu-Ni-Al-Lu bulk glassy alloys with superior glass-forming ability. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 186-190 DOI:10.1007/s11595-016-1350-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Inoue A, Takeuchi A. Recent Progress in Bulk Glassy Alloys[J]. Mater. Trans. JIM, 2002, 43(8): 1 892-1 906.

[2]

Johnson W L. Bulk Glass-forming Metallic Alloys: Science and Technology[J]. Mater. Res. Bull., 1999, 24(10): 42-56.

[3]

Tao P J, Yang Y Z, Guan G J, et al. Effect of Heat Treatment on the Mechanical Properties of FeCoZrWB Bulk Metallic Glass[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2012, 27(3): 547-549.

[4]

Zhang T, Inoue A, Masumoto T. Amorphous Zr-Al-Tm (Tm = Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K[J]. Mater. Trans. JIM, 1991, 32(11): 1 005-1 010.

[5]

Peker A, Johnson W L. A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl. Phys. Lett., 1993, 63(17): 2 342-2 344.

[6]

Wang Y, Shi L L, Duan D L, et al. Tribological Properties of Zr61Ti2Cu25Al12 Bulk Metallic Glass under Simulated Physiological Conditions[J]. Mater. Sci. Eng. C, 2012, 37(3): 292-304.

[7]

Peter W H, Buchanan R A, Liu C T, et al. Localized Corrosion Behavior of a Zirconium-based Bulk Metallic Glass Relative to Its Crystalline State[J]. Intermetallics, 2002, 10(11-12): 1 157-1 162.

[8]

Inoue A, Takeuchi A. Recent Progress in Bulk Glassy, Nanoquasicrystalline and Nanocrystallic Alloys[J]. Mater. Sci. Eng. A, 2004, 375-377: 16-30.

[9]

Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm Diameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5 Alloy[J]. Mater. Trans., JIM, 1993, 34(12): 1 234-1 237.

[10]

Hays C C, Schroers J, Geyer U, et al. Glass Forming Ability in the Zr-Nb-Ni-Cu-Al Bulk Metallic Glasses[J]. Mater. Sci. Forum, 2000, 343-346: 103-108.

[11]

Lin X H, Johnson W L, Rhim W K. Effect of Oxygen Impurity on Crystallization of an Undercooled Bulk Glass Forming Zr-Ti-Cu-Ni-Al Alloy[J]. Mater. Trans. JIM, 1997, 38(5): 474-477.

[12]

Jiang Q K, Wang X D, Nie X P, et al. Zr-(Cu, Ag)-Al Bulk Metallic Glasses[J]. Acta Mater., 2008, 56(8): 1 785-1 796.

[13]

Hua N B, Pang S J, Li Y, et al. Ni-and Cu-free Zr–Al–Co–Ag Bulk Metallic Glasses with Superior Glass-forming Ability[J]. J. Mater. Res., 2011, 26(4): 539-546.

[14]

Zhao X J, Ma C L, Pang S J, et al. The Glass-forming Ability and the I-phase Formation in Y-doped Zr-Nb-Cu-Ni-Al Glassy Alloys[J]. Philos. Mag. Lett., 2009, 89(1): 11-18.

[15]

Lu Z P, Liu C T. A New Glass-forming Ability Criterion for Bulk Metallic Glasses[J]. Acta Mater., 2002, 50(13): 3 501-3 512.

[16]

Tan H, Zhang Y, Ma D, et al. Optimum Glass Formation at Off-eutectic Composition and Its Relation to Skewed Eutectic Coupled Zone in the La based La-Al-(Cu,Ni) Pseudo Ternary System[J]. Acta Mater., 2003, 51(15): 4 551-4 561.

[17]

Ma D, Tan H, Wang D, et al. Strategy for Pinpointing the Best Glassforming Alloys[J]. Appl. Phys. Lett., 2005, 86(19): 191

[18]

Wang W H. Roles of Minor Additions in Formation and Properties of Bulk Metallic Glasses[J]. Prog. Mater. Sci., 2007, 52(4): 540-596.

[19]

Zhang Y, Pan M X, Zhao D Q, et al. Formation of Zr-based Bulk Metallic Glasses from Low Purity of Materials by Yittrium Additon[J]. Mater. Trans. JIM, 2000, 41(11): 1 410-1 414.

[20]

Xu D H, Duan G, Johnson W L. Unusual Glass-forming Ability of Bulk Amorphous Alloys based on Ordinary Metal Copper[J]. Phys. Rev. Lett., 2004, 92(24): 245

[21]

Lu Z P, Liu C T, Porter W D. Role of Yttrium in Glass Formation of Fe-based Bulk Metallic Glasses[J]. Appl. Phys. Lett., 2003, 83(13): 2 581-2 583.

[22]

Mihalkovic M, Widom M. Ab Initio Calculations of Cohesive Energies of Fe-based Glass-forming Alloys[J]. Phys. Rev. B, 2004, 70(14): 144 107-144 112.

[23]

Wang W H, Dong C, Shek C H. Bulk Metallic Glasses[J]. Mater. Sci. Eng. R, 2004, 44(2-3): 45-89.

[24]

Bancel P A, Heiney P A, Stephens P W, et al. Structure of Rapidly Quenched Al-Mn[J]. Phys. Rev. Lett., 1985, 54(22): 2 422-2 425.

[25]

Wright W L, Saha R, Nix W D. Deformation Mechanisms of the Zr40Ti14Ni10Cu12Be24 Bulk Metallic Glass[J]. Mater. Trans. JIM, 2001, 42(4): 642-649.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/