PDF
Abstract
The reaction kinetics between diazide(4,4’-biphenyl dibenzyl azide) and different diynes (dipropargyl bisphenol A and 1,3-diethynylbenzene) were studied by means of differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (1H-NMR). DSC was adopted to analyze the reactions under bulk polymerization condition, while 1H-NMR for solution reaction polymerization was conducted. The apparent activation energies (E α) calculated by Kissinger’s method were 77.96, 81.24 kJ/mol, which were confirmed by Friedman’s method, and 65.45, 69.36 kJ/mol by 1H-NMR for dispropargyl bisphenol A/4,4’-biphenyl dibenzyl azide and 1,3-diethynylbenzene/4,4’-biphenyl dibenzyl azide, respectively. The polymerizations between the diazide and diynes were first-order reactions based on calculation from both DSC and 1H-NMR. The results showed that the reaction between dipropargyl bisphenol A and 4,4’-biphenyl dibenzyl azide was easier than that between 1,3-diethynylbenzene and 4,4’-biphenyl dibenzyl azide, verifying that the reactivity of aliphatic alkyne was higher than that of aromatic alkyne.
Keywords
1,3-dipolar cycloaddition
/
dipropargyl bisphenol A
/
1,3-diethylnylbenzene
/
kinetic study
/
apparent activation energy
Cite this article
Download citation ▾
Rongpeng Liu, Liqiang Wan, Farong Huang, Lei Du.
Kinetic study of thermal polymerization reactions between diazide and different diynes.
Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 157-163 DOI:10.1007/s11595-016-1346-3
| [1] |
Michael A. Uber Die Einwirkung Von Diazobenzolimid Auf Acetylendicarbon Sauremethylester[J]. J. Prake. Chem., 1893, 48: 94-95.
|
| [2] |
Benson F R, Savel W L. The Chemistry of the Vicinal Triazoles[J]. Chem. Rev., 1950, 46(1): 1-68.
|
| [3] |
L’abbe G. Decomposition and Addition Reactions of Organic Azides[J]. Chem. Rev., 1969, 69(3): 345-363.
|
| [4] |
Huisgen R. 1,3-Dipolar Cycloadditions Past and Future[J]. Angew. Chem. Int. Ed., 1963, 2(11): 633-645.
|
| [5] |
Johson K E, Lovinger J A, Parker C O. 1,3-Dipolar Cycloaddition Polymerization of 4-azido-1-butyne[J]. J. Polym. Sci. Part B: Polym. Lett., 1966, 4: 977-979.
|
| [6] |
Baldwin M G, Johson K E, Lovinger J A. 1,3-Dipolar Cycloaddition Polymerization of Compounds Containing both Azido and Acetylenegroups[J]. J. Polym. Sci. Part B: Polym. Lett., 1967, 5: 803-805.
|
| [7] |
Rostovtsev V V, Green L G, Fokin V V, et al. A Stepwise Huisgen Cycloaddition Process: Copper(?)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes[J]. Angew. Chem. Int. Ed., 2001, 40(11): 2 004-2 021.
|
| [8] |
Himo F, Lovell T, Hilgraf R. Copper (I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates[J]. J. Am. Chem. Soc., 2005, 127(1): 210-216.
|
| [9] |
Binder W H, Sachsenhofer R. “Click” Chemistry in Polymer and Material Science: An Update[J]. Macromol. Rapid Commun., 2008, 29(12-13): 952-981.
|
| [10] |
Iha R K, Wooley K L, Nyström A M, et al. Applications of Orthogonal “Click” Chemistries in the Synthesis of Functional Soft Materials[J]. Chem. Rev., 2009, 109(11): 5 620-5 686.
|
| [11] |
Meldal M, Tornøe C W. Cu-Catalyzed Azide-Alkyne Cycloaddition[J]. Chem. Rev., 2008, 108(8): 2 952-3 015.
|
| [12] |
Carlmark A, Hawker C, Hult A, et al. New Methodologies in the Construction of Dendritic Materials[J]. Chem. Soc. Rev., 2009(38): 352–362
|
| [13] |
Droumaguet B L, Velonia K. Click Chemistry: A Powerful Tool to Create Polymer-Based Macromolecular Chimeras[J]. Macromol. Rapid Commun., 2008, 29(12-13): 1 073-1 089.
|
| [14] |
Lutz J F. 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science[J]. Angew. Chem. Int. Ed., 2007, 46(7): 1 018-1 025.
|
| [15] |
Schunack M, Gragert M, Döhler D, et al. Low-Temperature Cu (I)-Catalyzed “Click” Reactions for Self-Healing Polymers[J]. Macromol. Chem. Phys., 2012, 213(2): 205-214.
|
| [16] |
Hu Y H, Luo Y H, Wan L Q, et al. 1,3-Dipolar Cycloaddition Polymerization of Bispropargyl Ether of Bisphenol A with 4,4’-biphenyl Dibenzyl Azide and their Thermal Analyses[J]. Acta. Polym. Sin., 2005, 1(4): 560-565.
|
| [17] |
Luo Y H, Hu Y H, Wan L Q, et al. Cure Kinetics Study of the Polymerization of N, N, N’, N’-tetrapropargyl-p, p’-diamino Diphenyl Methane[J]. Chem. J. Chinese U., 2006, 27: 170-173.
|
| [18] |
Xue L, Wan L Q, Hu Y H, et al. Thermal Stability of a Novel Polytriazole Resin[J]. Thermochim. Acta., 2006, 448(2): 147-153.
|
| [19] |
Tian J J, Wan L Q, Huang J Z, et al. Synthesis and Characterization of a Novel Polytriazole Resin with Low-Temperature Curing Character[J]. Polym. Adv. Technol., 2007, 18(7): 556-561.
|
| [20] |
Wan L Q, Luo Y H, Xue L, et al. Preparation and Properties of a Novel Polytriazole Resin[J]. J. Appl. Polym. Sci., 2007, 104(2): 1 038-1 042.
|
| [21] |
E Y P, Wan L Q, Zhou X A, et al. Synthesis and Properties of Novel Polytriazoleimides derived from 1,2,3-triazole-containing Diamine and Aromatic Dianhydrides[J]. Polym. Adv. Technol., 2012, 23(7): 1 092-1 100.
|
| [22] |
E Y P, Wan L Q, Huang F R, et al. New Polytriazoleimides with High Thermal and Chemical Stabilities[J]. B. Kor. Chem. Soc., 2012, 33(7): 2 193-2 199.
|
| [23] |
Li Y J, Wan L Q, Zhou H, et al. A Novel Polytriazole-Based Organogel formed by the Effects of Copper Ions[J]. Polym. Chem., 2013, 4: 3 444-3 447.
|
| [24] |
Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29: 1 702-1 709.
|
| [25] |
Friedman H L. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic[J]. J. Polym. Sci., Part C: Polym. Lett., 1964, 6: 183-195.
|