Surface modification of natural fibrous brucite with stearic acid

Xi Cao , Xiuyun Chuan , Shuhui Zhou , Dubin Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 108 -112.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 108 -112. DOI: 10.1007/s11595-016-1338-3
Advanced Materials

Surface modification of natural fibrous brucite with stearic acid

Author information +
History +
PDF

Abstract

Fibrous brucite, a kind of brucite with unique structure and physical properties, was modified with stearic acid as a surface modifier. In order to investigate the mechanism of surface modification, the fixation of stearic acid on fibrous brucite and the induced changes in surface properties were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), Raman spectroscopy and thermo-gravimetric analysis (TGA). XRD analysis indicates that the modification of fibrous brucite with stearic acid does not cause any changes in the structure of fibrous brucite mineral. Spectroscopy and thermal analysis show that the surfactant molecules are not only directly adsorbed on the surface of the mineral, but also chemisorbed on mineral surface by forming chemical bonds between the modifier and magnesium hydroxide.

Keywords

fibrous brucite / modification / stearic acid / surface properties

Cite this article

Download citation ▾
Xi Cao, Xiuyun Chuan, Shuhui Zhou, Dubin Huang. Surface modification of natural fibrous brucite with stearic acid. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 108-112 DOI:10.1007/s11595-016-1338-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mokhov A V, Kolodyazhnaya E V, Gorshkov A I. The Nature of Fibrousness of Nemalite Microcrystalls[J]. Doklady Akademii Nauk, 1994, 334: 759-762.

[2]

Dong F Q, Pan Z L, Wan P. Studies on the Application Mineralogy of Fibrous Brucite in Heimulin of Southern Shaanxi Province[J]. Earth Sciences, 1993, 05: 642.

[3]

Liebling R S, Langer M. Optical Properties of Fibrous Brucite from Asbestos, Quebec[J]. American Mineralogist, 1972, 57: 857-864.

[4]

Lu Y D. The Study on the Preparation of Brucite Nano-fiber and Its Nanocomposites[J]. Inorganic Chemicals Industry, 2004, 36(6): 23-25.

[5]

Simandl G J, Paradis S, Irvine M. Brucite-Industrial Mineral with a Future[J]. Geoscience Canada, 2007, 34(2): 57-64.

[6]

Liu K P, Cheng H W, Zhou J E. Investigation of Brucite Fiber-Reinforced Concrete[J]. Cement and Concrete Research, 2004, 34(11): 1 981-1 986.

[7]

Dong F Q, Zhang B S, Wang W Q, et al. Study on Composite Performances of Natural Fibrous Brucite Flame Retardant[J]. Non-Metallic Mines, 2009, 32(6): 33-36.

[8]

Rothon R N, Hornsby P R. Flame Retardant Effects of Magnesium Hydroxide[J]. Polymer Degradation and Stability, 1996, 54(2): 383-385.

[9]

Chiang W Y, Hu C H. Approaches of Interfacial Modification for Flame Retardant Polymeric Materials[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(3-4): 517-524.

[10]

Hornsby P R, Watson C L. Interfacial Modification of Polypropylene Composites Filled with Magnesium Hydroxide[J]. Journal of Material Science, 1995, 30(21): 5 347-5 355.

[11]

Hippi U, Mattila J, Korhonen M, et al. Compatibilization of Polyethylene/Aluminum Hydroxide (PE/ATH) and Polyethylene/ Magnesium Hydroxide (PE/MH) Composites with Functionalized Polyethylenes[J]. Polymer, 2003, 44(4): 1 193-1 201.

[12]

Mihajlovic S, Sekulic Dakovic A, et al. Surface Properties of Natural Calcite Filler Treated with Stearic Acid[J]. Ceramics-Silikáty, 2009, 53(4): 268-275.

[13]

Huang H H, Tian M, Yang J, et al. Stearic Acid Surface Modifying Mg(OH)2: Mechanism and Its Effect on Properties of Ethylene Vinyl Acetate/Mg(OH)2 Composites[J]. Journal of Applied Polymer Science, 2008, 107: 3 325-3 331.

[14]

Xu L, Ni W, Li W P, et al. Preparation of Natural Brucite Nanofibers by the Dispersion Method[J]. Journal of University of Science and Technology Beijing, 2008, 15(4): 489-494.

[15]

Gadsden J A. Infrared Spectra of Minerals and Related Inorganic Compounds[M]. London: Butterworths, 1975

[16]

Frost R L. Hydroxyl Deformation in Kaolins[J]. Clay and Clay Minerals, 1998, 46(3): 280-289.

[17]

Ledoux R L, White J L. Infrared Studies of Hydrogen Bonding Interaction between Kaolinite Surfaces and Intercalated Potassium Acetate, Hydrazine, Formamide and Urea[J]. Journal of Colloid Interface Science, 1966, 21(2): 127-152.

[18]

Frost R L, Bahfenne S, Graham J E. Raman Spectroscopic Study of the Magnesium-carbonate Minerals-Artinite and Dypingite[J]. Journal of Raman Spectroscopy, 2009, 40(8): 855-860.

[19]

Hermansson K, Probst M M, Gajewski G, et al. Anharmonic OH Vibrations in Mg(OH)2 (Brucite): Two-dimensional Calculations and Crystal-induced Blueshift[J]. Journal of Chemical Physics, 2009, 131(24): 244

[20]

Frost R L, Reddy B J. Thermo-Raman Spectroscopic Study of the Natural Layered Double Hydroxide Manasseite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65(3-4): 553-559.

[21]

Luo M, Guan P, Liu W H, et al. Raman Spectrometry of Several Saturated Fatty Acids and their Salts[J]. Spectroscopy and Spectral Analysis, 2006, 26(11): 2 030-2 034.

[22]

Chen X L, Yu J, Guo S Y, et al. Surface Modification of Magnesium Hydroxide and Its Application in Flame Retardant Polypropylene Composites[J]. Journal of Material Science, 2009, 44(5): 1 324-1 332.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/