Structural characteristics and photocatalytic activity of ambient pressure dried SiO2/TiO2 aerogel composites by one-step solvent exchange/surface modification

Haixun Xu , Pinghua Zhu , Lijiu Wang , Zuqiang Jiang , Shanyu Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 80 -86.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 80 -86. DOI: 10.1007/s11595-016-1334-7
Advanced Materials

Structural characteristics and photocatalytic activity of ambient pressure dried SiO2/TiO2 aerogel composites by one-step solvent exchange/surface modification

Author information +
History +
PDF

Abstract

An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride (TiCl4) and sodium silicate (Na2nSiO2). After gelation, solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure. Microstructural analyses by transmission electron microscope (TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel, and the Brunauer–Emmett–Teller (BET) analysis shows that the specific surface area of the composite reaches 605 m2/g, and the average pore size is 9.7 nm. Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange (MO), and the decolorizing efficiency of MO is detected as 84.9% after 210 mins exposure to UV light irradiation. Degraded gel suspends in the water so as to separate from solution for reuse, and after 4 times recycling, 70% degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.

Keywords

photocatalytic activity / water glass / SiO2/TiO2 binary aerogel / ambient drying

Cite this article

Download citation ▾
Haixun Xu, Pinghua Zhu, Lijiu Wang, Zuqiang Jiang, Shanyu Zhao. Structural characteristics and photocatalytic activity of ambient pressure dried SiO2/TiO2 aerogel composites by one-step solvent exchange/surface modification. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 80-86 DOI:10.1007/s11595-016-1334-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo L, Cooper A T, Fan M. Preparation and Application of Nanoglued Binary Titania-silica Aerogel[J]. J. Hazard. Mater., 2009, 161(1): 175-182.

[2]

Aravind P R, Shajesh P, Mukundan P, et al. Silica-titania Aerogel Monoliths with Large Pore Volume and Surface Area by Ambient Pressure Drying[J]. J. Sol-Gel Sci. Techn., 2009, 52(3): 328-334.

[3]

Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96.

[4]

Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chem. Rev., 1995, 95(3): 735-758.

[5]

Itoh M, Hattori H, Tanabe K. The Acidic Properties of TiO2-SiO2 and Its Catalytic Activities for the Amination of Phenol, the Hydration of Ethylene and the Isomerization of Butene[J]. J. Catal., 1974, 35(2): 225-231.

[6]

Hutter R, Mallat T, Baiker A. Titania Silica Mixed Oxides: II. Catalytic Behavior in Olefin Epoxidation[J]. J. Catal., 1995, 153(1): 177-189.

[7]

Sohn J R, Jang H J. Correlation between the Infrared Band Frequency of the Silanol Bending Vibration in TiO2-SiO2 Catalysts and Activity for Acid Catalysis[J]. J. Catal., 1991, 132(2): 563-565.

[8]

Imamura S, Tarumoto H, Ishida S. Decomposition of 1,2-dichloroethane on Titanium Dioxide/silica[J]. Ind. Eng. Chem. Res., 1989, 28(10): 1 449-1 452.

[9]

Grieken V R, Aguado J, López-Muñoz M J, et al. Synthesis of Sizecontrolled Silica-supported TiO2 Photocatalysts[J]. J. Photoch. Photobio. A, 2002, 148(1-3): 315-322.

[10]

Ahmed S, Kemp T J, Unwin P R. Photomineralisation Kinetics of Aqueous Chlorophenols at a Supported TiO2 Surface Studied by the Channel-flow Method with Electrochemical Detection[J]. J. Photoch. Photobio. A, 2001, 141(1): 69-78.

[11]

Deng Z, Wang J, Zhang Y, et al. Preparation and Photocatalytic Activity of TiO2-SiO2 Binary Aerogels[J]. Nanostruct. Mater., 1999, 11(8): 1 313-1 318.

[12]

Bellardita M, Addamo M, Di Paola A, et al. Photocatalytic Activity of TiO2/SiO2 Systems[J]. J. Hazard. Mater., 2010, 174(1-3): 707-713.

[13]

Liu M, Gan L, Pang Y, et al. Synthesis of Titania-silica Aerogellike Microspheres by a Water-in-oil Emulsion Method via Ambient Pressure Drying and Their Photocatalytic Properties[J]. Colloids Surf. A: Physicochem. Eng. Asp., 2008, 317(1-3): 490-495.

[14]

Aravind P, Shajesh P, Mukundan P, et al. Silica-titania Aerogel Monoliths with Large Pore Volume and Surface Area by Ambient Pressure Drying[J]. J. Sol-Gel Sci. Techn., 2009, 52(3): 328-334.

[15]

Kochkar H, Figueras F. Synthesis of Hydrophobic TiO2-SiO2 Mixed Oxides for the Epoxidation of Cyclohexene[J]. J. Catal., 1997, 171(2): 420-430.

[16]

Rao A V, Nilsen E, Einarsrud M A. Effect of Precursors, Methylation Agents and Solvents on the Physicochemical Properties of Silica Aerogels Prepared by Atmospheric Pressure Drying Method[J]. J. Non-Cryst. Solids, 2001, 296(3): 165-171.

[17]

Wang L J, Zhao S Y, Yang M. Structural Characteristics and Thermal Conductivity of Ambient Pressure Dried Silica Aerogels with One-step Solvent Exchange/surface Modification[J]. Mater. Chem. Phys., 2009, 113(1): 485-490.

[18]

Tamon H, Ishizaka H, Yamamoto T, et al. Preparation of Mesoporous Carbon by Freeze Drying[J]. Carbon, 1999, 37(12): 2 049-2 055.

[19]

Wang L J, Zhao S Y. Synthesis and Characteristics of Mesoporous Silica Aerogels with One-step Solvent Exchange/surface Modification[J]. J. Wuhan Uni. of Technol.-Mater. Sci. Ed., 2009, 24(4): 613-618.

[20]

Bryans T R, Brawner V L, Quitevis E L. Microstructure and Porosity of Silica Xerogel Monoliths Prepared by the Fast Sol-Gel Method[J]. J. Sol-Gel Sci. Techn., 2000, 17(3): 211-217.

[21]

Kulkarni M M, Seth T, Rao A V, et al. Surface Chemical Modification of Silica Aerogels Using Various Alkyl-alkoxy/Chloro Silanes[J]. Appl. Surf. Sci., 2003, 206(1-4): 262-270.

[22]

Gregg S J, Sing K S W, Salzberg H W. Adsorption Surface Area and Porosity[J]. J. Electrochem. Soc., 1967, 114: 279C.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/