PDF
Abstract
The structural and elastic properties of the recently-discovered wII- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials. The elastic constants show that wII- and δ-Si3N4 are mechanically stable in the pressure ranges of 0-50 GPa and 40-50 GPa, respectively. The α→wII phase transition can be observed at 18.6 GPa and 300 K. The β→δ phase transformation occurs at pressures of 29.6, 32.1, 35.9, 39.6, 41.8, and 44.1 GPa when the temperatures are 100, 200, 300, 400, 500, and 600 K, respectively. The results show that the interactions among the N-2s, Si-3s, 3p bands (lower valence band) and the Si-3p, N-2p bands (upper valence band) play an important role in the stabilities of the wII and δ phases. Moreover, several thermodynamic parameters (thermal expansion, free energy, bulk modulus and heat capacity) of δ-Si3N4 are also obtained. Some interesting features are found in these properties. δ-Si3N4 is predicted to be a negative thermal expansion material. The adiabatic bulk modulus decreases with applied pressure, but a majority of materials show the opposite trend. Further experimental investigations with higher precisions may be required to determine the fundamental properties of wII- and δ-Si3N4.
Keywords
density functional theory
/
phase boundary
/
density of states
/
thermal expansion
Cite this article
Download citation ▾
Dong Chen, Yuping Cang.
First-principles study of the high-temperature behaviors of the willemite-II and post-phenacite phases of silicon nitride.
Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 74-79 DOI:10.1007/s11595-016-1333-8
| [1] |
Kruger M B, Nguyen J H, Li Y M, et al. Equation of State of a-Si3N4s[J]. Physical Review B, 1997, 55: 3 456-3 460.
|
| [2] |
Zerr A, Miehe G, Serghiou G, et al. Synthesis of Cubic Silicon Nitride[J]. Nature (London), 1999, 400: 340-342.
|
| [3] |
Mo S D, Ouyang L Z, Ching W Y, et al. Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4[J]. Physical Review Letters, 1999, 83: 5 046-5 049.
|
| [4] |
Kroll P. Pathways to Metastable Nitride Structures[J]. Journal of Solid State Chemistry, 2003, 176: 530-537.
|
| [5] |
Zerr A. A New High-Pressure d-phase of Si3N4[J]. Physica Status Solidi B, 2001, 227: R4-R6.
|
| [6] |
Xu B, Dong J J, McMillan P F, et al. Equilibrium and Metastable Phase Transitions in Silicon Nitride at High Pressure: A First-Principles and Experimental Study[J]. Physical Review B, 2011, 84: 014.
|
| [7] |
Ordonez S, Iturriza I, Castro F. The Influence of Amount and Type of Additives on a?ß Si3N4 Trans-formation[J]. Journal of Materials Science, 1999, 34: 147-153.
|
| [8] |
Kuwabara A, Matsunaga K, Tanaka I. Lattice Dynamics and Thermodynamical Properties of Silicon Nitride Polymorphs[J]. Physical Review B, 2008, 78: 064.
|
| [9] |
Togo A, Kroll P. First-Principles Lattice Dynamics Calculations of the Phase Boundary between beta-Si3N4 and Gamma-Si3N4 at Elevated Temperatures and Pressure[J]. Journal of Computational Chemistry, 2008, 29: 2 255-2 259.
|
| [10] |
von Lilienfeld O A, Tavernelli I, Rothlisberger U. Optimization of Effective Atom Centered Potentials for London Dispersion Forces in Density Functional Theory[J]. Physical Review Letters, 2004, 93: 153.
|
| [11] |
Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Physical Review B, 1990, 41: 7 892-7 895.
|
| [12] |
Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation made Simple[J]. Physical Review Letters, 1996, 77: 3 865-3 868.
|
| [13] |
Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations[J]. Physical Review B, 1976, 13: 5 188-5 192.
|
| [14] |
Blanco M A, Francisco E, Luana V. Gibbs: Isothermal-Isobaric Thermodynamics of Solids from Energy Curves using a Quasi-Harmonic Debye Model[J]. Comput. Phys. Commun., 2004, 158: 57-72.
|
| [15] |
Murnaghan F D. The Compressibility of Media under Extreme Pressures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1944, 30: 244-247.
|
| [16] |
Sin’ko G V, Smirnov N A. Ab Initio Calculations of Elastic Constants and Thermodynamic Properties of bcc, fcc, and hcp Al Crystals under Pressure[J]. Journal of Physics: Condensed Matter., 2002, 14: 6 989-6 992.
|
| [17] |
Hu Q M, Lu S, Yang R. Elastic Stability of ß-Ti under Pressure Calculated using a First-Principles Plane-Wave Pseudo-potential Method[J]. Physical Review B, 2008, 78: 052.
|
| [18] |
Gregoryanz E, Hemley R J, Mao H K, et al. High-Pressure Elasticity of a-quartz: Instability and Ferroelastic Transition[J]. Physical Review Letters, 2000, 84: 3 117-3 120.
|
| [19] |
Yu B H, Chen D. Investigations of meta-Stable and Post-Spinel Silicon Nitrides[J]. Physica B, 2012, 407: 4 660-4 664.
|
| [20] |
Chen D, Yu B H. Pressure-Induced Phase Transition in Silicon Nitride Material[J]. Chinese Physics B, 2013, 22: 023.
|
| [21] |
Shaposhnikov A V, Petrov I P, Gritsenko V A, et al. Electronic Band Structure and Effective Maßses of Electrons and Holes in the a and ß Phases of Silicon Nitride[J]. Physics of the Solid State, 2007, 49: 1 628-1 632.
|
| [22] |
Carson R D, Schnatterly S E. Valence-Band Electronic Structure of Silicon Nitride Studied with the Use of Soft-X-Ray Emission[J]. Physical Review B, 1986, 33: 2 432-2 438.
|
| [23] |
Oh J W, Kim C Y, Nahm K S, et al. The Hydriding Kinetics of LaNi4.5Al0.5 with Hydrogen[J]. Journal of Alloys and Compounds, 1998, 278: 270-276.
|