Effects of annealing processes on Cu xSi1-x thin films

Song Zhang , Jun Wu , Zhiqiang He , Rong Tu , Ji Shi , Lianmeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 31 -34.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 31 -34. DOI: 10.1007/s11595-016-1325-8
Advanced Films and Coatings

Effects of annealing processes on Cu xSi1-x thin films

Author information +
History +
PDF

Abstract

The Cu xSi1-x thin films have been grown by pulsed laser deposition (PLD) with in situ annealing on Si (001) and Si (111), respectively. The transformation of phase was detected by X-ray diffraction (XRD). The results showed that the as-deposited films were composed of Cu on both Si (001) and Si (111). The annealed thin films consisted of Cu + η”-Cu3Si on Si (001) while Cu + η’-Cu3Si on Si (111), respectively, at annealed temperature (T a) = 300-600 °C. With the further increasing of T a, at T a= 700 °C, there was only one main phase, η”-Cu3Si on Si (001) while η’-Cu3Si on Si (111), respectively. The annealed thin films transformed from continuous dense structure to scattered-grain morphology with increasing T a detected by field emission scanning electron microscope (FESEM). It was also showed that the grain size would enlarge with increasing annealing time (t a).

Keywords

Cu xSi1-x thin films / PLD / phase / surface morphology

Cite this article

Download citation ▾
Song Zhang, Jun Wu, Zhiqiang He, Rong Tu, Ji Shi, Lianmeng Zhang. Effects of annealing processes on Cu xSi1-x thin films. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 31-34 DOI:10.1007/s11595-016-1325-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He Y, Wang Y H, Yu X Q, et al. Si-Cu Thin Film Electrode with Kirkendall Voids Structure for Lithium-Ion Batteries[J]. J. Electrochem. Soc., 2012, 159(12): 2 076-2 081.

[2]

Li S, Cai H, Gan C L, et al. Controlled Synthesis of Copper-Silicide Nanostructures[J]. Cryst. Growth Des., 2010, 10(7): 2 983-2 989.

[3]

Zhang Z, Wang L M, Ong H G, et al. Self-assembled Shape-and Orientation-Controlled Synthesis of Nanoscale Cu3Si Triangles, Squares, and Wires[J]. Nano Lett., 2008, 8(10): 3 205-3 210.

[4]

Ng P K, Fisher B, Low K B, et al. Comparison Between Bulk and Nanoscale Copper-Silicide: Experimental Studies on The Crystallography, Chemical, and Oxidation of Copper-Silicide Nanowires on Si(001)[J]. J. Appl. Phys., 2012, 111(10): 104

[5]

Gubbiotti G, Carlotti G, Socino G, et al. Perpendicular and In-plane Magnetic Anisotropy in Epitaxial Cu/Ni/Cu/Si(111) Ultrathin Films[J]. Phys. Rev. B, 1997, 56(17): 11 073-11 083.

[6]

Daugy E, Mathiez P, Salvan F, et al. 7×7 Si(111)-Cu Interfaces: Combined Leed, Aes and Eels Measurements[J]. Surf. Sci. Lett., 1985, 154(1): A223

[7]

Wilson R J, Chiang S. Examination of The Cu/Si(111) 5×5 Structure by Scanning Tunneling Microscopy[J]. Phys. Rev. B Condens. Matter., 1989, 38(17): 12 696-12 699.

[8]

Nishino Y, Ota Y, Kawazoe T. Amplitude-dependent Internal Friction in Copper Thin Films on Silicon Substrates[J]. Mater. Sci. Eng. A, 2004, 370(1-2): 146-149.

[9]

Jain A. Selective and Blanket Copper Chemical Vapor Deposition for Ultra-large-scale Integration[J]. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 1993, 11(6): 2 107-2 113.

[10]

Zhang Z H, Hasegawa S, Ino S. Epitaxial Growth of Cu onto Si(111) Surfaces at Low Temperature[J]. Surf. Sci., 1998, 415(3): 363-375.

[11]

Bhansali S, Sood D K, Zmood R B. Selective Electroless Copper Plating on Silicon Seeded by Copper Ion Implantation[J]. Thin Solid Films, 1994, 253(1-2): 391-394.

[12]

Zhang K, Rossi C, Tenailleau C, et al. Synthesis of Large-area and Aligned Copper Oxide Nanowires from Copper Thin Film on Silicon Substrate[J]. Nanotechnology, 2007, 18(27): 275

[13]

Foley J H, Raynor G V. Lattice Spacings in The System Copper+ Germanium+Silicon[J]. Trans. Faraday Soc., 1961, 57: 51-60.

[14]

Foley J H, Cahn R W, Raynor G V. Stacking Fault Densities in The Copper-germanium, Copper-Silicon and Copper-Germanium Silicon Alloys[J]. Acta Metall., 1963, 11(5): 355-360.

[15]

Solberg J K. The Crystal Structure of ?-Cu3Si Precipitates in Silicon[J]. Acta Crystallogr. Sect. A, 1978, 34(5): 684-698.

[16]

Frank T C, Falconer J L. Surface Compositions of Copper-Silicon Alloys[J]. Appl. Surf. Sci., 1983, 14(3-4): 359-374.

[17]

Stolt L, D’Heurle F M. The Formation of Cu3Si: Marker Experiments[J]. Thin Solid Films, 1990, 189(2): 269-274.

[18]

Stolt L. Formation of Cu3Si and Its Catalytic Effect on Silicon Oxidation at Room Temperature[J]. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 1991, 9(3): 1 501

[19]

Stolt L, D’Heurle F M, Harper J M E. On The Formation of Copper-Rich Copper Silicides[J]. Thin Solid Films, 1991, 200(1): 147-156.

[20]

Harper J M E, Charai A, Stolt L, et al. Room-Temperature Oxidation of Silicon Catalyzed by Cu3Si[J]. Appl. Phys. Lett., 1990, 56(25): 2 519

[21]

Aboelfotoh M O, Krusin-Elbaum L. Electrical Transport in Thin Films of Copper Silicide[J]. J. Appl. Phys., 1991, 70(6): 3 382-3 384.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/