A review: Structural oxide coatings by laser chemical vapor deposition

Takashi Goto

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 1 -5.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (1) : 1 -5. DOI: 10.1007/s11595-016-1319-6
Advanced Films and Coatings

A review: Structural oxide coatings by laser chemical vapor deposition

Author information +
History +
PDF

Abstract

Yttria-stabilized zirconia and α-alumina films were prepared by laser chemical vapor deposition at deposition rates of several hundred micrometers per hour. Moreover, the structural oxide coatings by laser chemical vapor deposition are reviewed. The laser can significantly accelerate the chemical reaction and grain growth in CVD, yielding high deposition rates. The films contain large amounts of nanopores that act as thermal insulation and are thus promising as coating materials for gas turbine blades of Ni-based superalloys and WC-Co cutting tools.

Keywords

laser CVD / yttria-stabilized zirconia / alumina / plasma / nano-pores

Cite this article

Download citation ▾
Takashi Goto. A review: Structural oxide coatings by laser chemical vapor deposition. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(1): 1-5 DOI:10.1007/s11595-016-1319-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hiraui T, Niihara K, Goto T. Rapid Chemical Vapour-deposition of Si3N4[J]. J. Mater. Sci., 1977, 12: 631-634.

[2]

Hirai T, Goto T, Kaji T. Preparation of Silicon Carbide by Chemical Vapor Deposition[J]. Ceram. Soc. Japan, 1983, 91: 503-507.

[3]

Duty C, Jean D, Lackey WJ. Laser Chemical Vapour Deposition: Materials, Modelling, and Process Control[J]. Inter. Mater. Rev., 2001, 46: 271-274.

[4]

Kimura T, Goto T. Rapid Synthesis of Yttria-stabilized Zirconia Films by Laser Chemical Vapor Deposition[J]. Mater. Trans., 2003, 44: 421-427.

[5]

MIYAZAKI H, KIMURA T, GOTO T. Acceleration of Deposition Rates in a Chemical Vapor Deposition Process by Laser Irradiation[J]. Jpn. J. Appl. Phys., 2003, 42: L316-319

[6]

Zhang S, Tu R, Goto T. High-Speed Epitaxial Growth of ß-SiC Film on Si(111) Single Crystal by Laser Chemical Vapor Deposition[J]. J. Amer. Ceram. Soc., 2012, 95: 2 782-2 785.

[7]

Kimura T, Goto T. Rapid Synthesis of Yttria-stabilized Zirconia Films by Laser Chemical Vapor Deposition[J]. Mater. Trans., 2003, 44: 421-426.

[8]

Tu R, Kimura T, Goto T. Rapid Synthesis of Yttria-Partially-Stabilized Zirconia Films by Metal-Organic Chemical Vapor Deposition[J]. Mater. Trans., 2002, 43: 2 354-2 360.

[9]

Akiyama Y, Sato T, Imanishi N. Reaction Analysis for ZrO2 and Y2O3 Thin Film Growth by Low-Pressure Metalorganic Chemical Vapor Deposition Using b-Diketonate Complexes[J]. J. Cryst. Growth, 1995, 147: 130-135.

[10]

Puver M, Nemetz W, Wahl G. CVD of ZrO2, Al2O3 and Y2O3 from Metalorganic Compounds in Different Reactors[J]. Surf. Coat. Tech., 2000, 125: 400-406.

[11]

Wahl G, Nemetz W, Giannozzi M, et al. Chemical Vapor Deposition of TBC: an Alternative Process for Gas Turbine Components[J]. Trans. ASME, 2001, 123: 520-529.

[12]

Bourhia N, Felten F, Senateur JP, et al. Deposition and Characterization of ZrO2 And Yttria-Stabilized ZrO2 Films using Injection-LPCVD[C]. Proc. 14th Conf. EUROCVD-11, 1997 417-422.

[13]

Goto T. High-speed Deposition of Zirconia Films by Laser-induced Plasma CVD[J]. Solid State Ionics, 2004, 172: 225-230.

[14]

Lu T J, Levi C G, Wadley Nng, et al. Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Mode by Physical Vapor Deposition[J]. J. Amer. Ceram. Soc., 2001, 84: 2 937.

[15]

Ruppi S. Deposition, Microstructure and Properties of Texturecontrolled CVD a-Al2O3 Coatings[J]. Int. J.Refrac. Mat. Hard Mater., 2005, 23: 306-309.

[16]

Kadokura H, Ito A, KIMURA T, et al. Moderate Temperature and High-speed Synthesis of a-Al2O3 Films by Laser Chemical Vapor Deposition Using Nd:YAG Laser[J]. Surf. Coat. Tech., 2010, 204: 2 302-2 306.

[17]

Park C, Kim J, Chun JS. The Effects of Reaction Parameters on the Deposition Characteristics in Al2O3 CVD[J]. J. Vac. Sci. Technol. A, 1983, 1: 1 820-1 825.

[18]

Ruppi S, Larsson A. Chemical Vapour Deposition of ?-Al2O3[J]. Thin Solid Films, 2001, 388: 50-58.

[19]

Maruyama T, Arai S. Aluminum Oxide Thin Films Prepared by Chemical Vapor Deposition from Aluminum Acetylacetonate[J]. Appl. Phys. Lett., 1992, 60: 322-330.

[20]

Devi A, Shivashankar S, Samuelson A. MOCVD of Aluminium Oxide Films Using Aluminiurn Beta-diketonates as Precursors[J]. J. Phys. IV, 2002, 12: 139-145.

[21]

Pflitsch C, Viefhaus D, Bergmann U, et al. Organometallic Vapour Deposition of Crystalline Aluminium Oxide Films on Stainless Steel Substrates[J]. Thin Solid Films, 2007, 515: 3 653-3 658.

[22]

Holman WR, Huegel FJ. Interrelationships between Process Param-eters, Structure, and Properties of CVD Tungsten and Tungsten-Rhenium Alloys[J]. J. Vac. Sci. Technol., 1974, 11: 701-706.

[23]

Goto T, Banal R, Kimura T. Morphology and Preferred Orientation of Y2O3 Film Prepared by High-speed Laser CVD[J]. Surf. Coat Tech., 2007, 201: 5 776-5 782.

[24]

Guo D, Ito A, Goto T, et al. Effect of Laser Power on Orientation and Microstructure of TiO2 Films Prepared by Laser Chemical Vapor Deposition Method[J]. Mater. Lett., 2013, 93: 179-184.

[25]

Katsui H, Goto T. Epitaxial Growth of (104)-and (018)-oriented LiCoO2 Films on MgO Single Crystals Prepared by Chemical Vapor Deposition[J]. Surf. Coat. Tech., 2013, 218: 57-62.

[26]

Katsui H, Goto T. Preparation of Cubic and Tetragonal Li7La3Zr2O12 Film by Metal Organic Chemical Vapor Deposition[J]. Thin Solid Films, 2015, 584: 130-135.

[27]

Guo D, Ito A, Tu R, et al. Microstructure and Dielectric Response of (111)-oriented Tetragonal BaTiO3 Thick Films Prepared by Laser Chemical Vapor Deposition[J]. J. Asian Ceram. Soc., 2013, 1: 197-203.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/