Thermodynamic and optical properties of CuAlO2 under pressure from first principle

Liqin Zhang , Yan Cheng , Guangfu Ji

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1338 -1344.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1338 -1344. DOI: 10.1007/s11595-015-1318-z
Metallic Materials

Thermodynamic and optical properties of CuAlO2 under pressure from first principle

Author information +
History +
PDF

Abstract

The structural stability, thermodynamic and optical properties of delafossite CuAlO2 were investigated using the norm-conserving pseudopotential technique based on the first-principle density-functional theory. The ground-state properties obtained by minimizing the total energy were in favorable agreement with previous works. By using the quasi-harmonic Debye model, the thermodynamic properties including the Debye temperature ΘD, heat capacity C V, thermal expansion coefficient α, and Grüneisen parameter γ were successfully obtained in the temperature range from 0 to 1 000 K and pressure range from 0 to 80 GPa, respectively. The optical properties including dielectric function ε(ω), absorption coefficient α(ω), reflectivity coefficient R(ω), and refractive index n(v) were also calculated and analyzed.

Keywords

first principle / CuAlO2 / thermodynamic properties / optical properties

Cite this article

Download citation ▾
Liqin Zhang, Yan Cheng, Guangfu Ji. Thermodynamic and optical properties of CuAlO2 under pressure from first principle. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(6): 1338-1344 DOI:10.1007/s11595-015-1318-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banerjee AN, Maity R, Chosh PK, et al. Thermoelectric Properties and Electrical Characteristics of Sputter-deposited p-CuAlO2 Thin Film [J]. Thin Solid Films., 2005, 474: 261-266.

[2]

BENKO FA, KOFFYBERG FP. Preparation of CuAlO2 Films by Wet Chemical Synthesis [J]. J. Phys. Chem. Solids., 1984, 45: 57-59.

[3]

Kawazoe H, Yasukawa M, Hyodo H, et al. P-Type Electrical Conduc-tion in Transparent Thin Films of CuAlO2[J]. Nature., 1997, 389: 939-942.

[4]

Yanagi H, Inoue SI, Ueda K, et al. Electronic Structure and Optoelectronic Properties of Transparent p-type Conducting CuAlO2 [J]. J. Apple. Phys., 2000, 88: 4159-4163.

[5]

Pellicer-porrees J, Segura A, Gilliland AS, et al. On the Band Gap of CuAlO2 Delafossite [J]. Appl. Phys. Lett., 2006, 88: 181904-181907.

[6]

Banerjee AN, Maity R, Chattopadhyay KK. Low-cost Synthesis of p-CuAlO2 Nanoparticales and Study of Size-dependent Optical Properties for Transparent Nanoelectronic Applications[J]. Mater. Lett., 2003, 58: 10-13.

[7]

Tate J, Ju HL, Moon JC, et al. Oigin of p-type Conduction in Singlecrystal CuAlO2[J]. Phys. Rev. B., 2009, 80: 165206(1)-165206(8).

[8]

Lan W, Zhang M, Dong G, et al. The Effect of Oxygen on the Properties of Transparent Conducting Cu-Al-O Thin Films Deposited by fr Magnetron Sputtering [J]. Mater. Sci. Eng. B., 2007, 139: 155-159.

[9]

Banerjee AN, Kundoo S, Chattopahdyay KK. Synthesis and Characterization of p-type Transparent Conducting CuAlO2 Thin Film by DC Sputtering [J]. Thin Solid Felms., 2003, 440: 5-10.

[10]

Nie X, Wei SH, Zhang SB. Bipolar Doping and Band-gap Anomalies in Delafossite Transparent Conductive Oxides[J]. Phys. Rev. Lett., 2002, 88: 066405(1)-066405(4).

[11]

Bouding S, Felser C, Studer F. Cu-Cu Interactions in the Transparent p-type Conductors: CuAlO2 and SrCu2O2 [J]. Solid State Sci., 2003, 5: 741-744.

[12]

Laskowski R, Christensen NE, Blaha P, et al. Strong Excitonic Effects in CuAlO2 Elafossitetrans Parent Conductiveoxides[J]. Phys.Rev.B., 2009, 79: 165209(1)-165209(7).

[13]

Yanagi H, Inoue SI, Ueda K, et al. Electronic Structure and Optoelectronic Properties of Transparent p-type Conductiong CuAlO2[J]. J. Appl. Phys., 2000, 88: 4159-4163.

[14]

Ingram BJ, Mason TO, Asahi R, et al. Electronic Structure and Small Polaron Hole Transport of Copper Aluminate[J]. Phys. Rev. B., 2001, 64: 155114(1)-155114(7).

[15]

Buljan A, Alemany P, Ruiz E. Electronic Structure and Bonding in CuMO2(M=Al, Ga, Y) DDelafossite-type Oxides:an ab Initio Study[J]. J. Phys. Chem. B., 1999, 103: 8060-8066.

[16]

Liu QJ, Liu ZT, Feng L P, et al. Density Functional Theory Study of 3R-and 2H-CuAlO2 under Pressure[J]. Applied Physcs Letters., 2010, 97: 141917(1)-141917(3).

[17]

Ghosh CK, Sarkar D, Mitra MK, et al. Electronic Structure and Optical Properties of CuAlO2 under Biaxial Strain [J]. J Phys.: Condens. Matter., 2012, 24: 235501(1–8).

[18]

Milman V, Winkler B, White JA, et al. Electronic Structure, Properties and Phase Stability of Inorganic Crystals: A Pseudopotential Planewave Study [J]. Int. J. Quantum. Chem., 2000, 77: 895-910.

[19]

Payne MC, Teter MP, Allen DC, et al. Iterative Minimization Techniques for ab Initio Total-energy Calculations: Molecular Dynamics and Conjugate Gradients[J]. Rev. Mod. Phys., 1992, 64: 1045-1097.

[20]

Perdew JP, Burke K, Ernzerhof M. Pressure and Temperature Dependence of the Lattice Dynamics of CuAlO2 Investigated by Raman Scattering Experiments and Ab Initio Calculations[J]. Phys. Rev. Lett., 1996, 77: 3865(1)-3864(4).

[21]

Monkhorst HJ, Pack JD. Special Points for Brillouin-zone Integrations [J]. Phys. Rev. B., 1976, 13: 5188-5192.

[22]

Vinet P, Rose JH, Ferrante J, et al. Universal Features of the Equation of State of Solids[J]. J. Phys.: Condens. Matter., 1989, 1: 1941-1964.

[23]

Blanco MA, Francisco E, Luana V. Gibbs: Isothermal-isobaric Thermodynamics of Solids from Energy Curves Using a Quasiharmonic Debye Model[J]. Comput. Phys. Commun., 2004, 158: 57-72.

[24]

Amrosch-draxl C, Sofo JO. Linear Optical Properties of Solids Within the Full-potential Linearized Augmented Planewave Method[J]. Comput. Phys. Commun., 2002, 175: 1-14.

[25]

Liu QJ, Liu ZT, Feng LP. Theoretical Calculations of Mechanical, Electronic, Chemical Bonding and Optical Properties of Delafossite CuAlO2[J]. Physics B., 2010, 405: 2082-2093.

[26]

Rodriguez P, Munoz A, Pellicer-pprres J, et al. Lattice Dynamics of CuAlO2 under High Pressure from Ab Initio Calculation[J]. Phys. Stat. Sol. B., 2007, 244: 342-346.

[27]

Jaualakshmi V, Murugan R, Palanivel B. Electronic and Structural Properties of CuAlO2(M=Al, Ga, In)[J]. J. Alloys Compd., 2005, 388: 19-22.

[28]

Christensen NE, Svane A, Laskowske R, et al. Electronic Properties of 3R-CuAlO2 under Pressure: Three Theoretical Approaches[J]. Phys. Rev. B., 2010, 81: 045 203(1)-045 203(9).

[29]

SIN’KO GV, Smirnov NA. AB Initio Calculations of Elastic Constants and Thermodynamic Properties of bcc, fcc, and hcp Al Crystals under Pressure[J]. J. Phys.: Condens. Matter., 2002, 14: 6989-7005.

[30]

Laskowski R, Christensen NE, Blaha P, et al. Strong Excitonic Effects in CuAlO2 Delafossitetran Sparent Conductive Oxides[J]. Phys. Pev. B., 2009, 79: 165209(1)-165209(9).

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/