Optimized synthesis of carbon aerogels via ambient pressure drying process as electrode for supercapacitors

Lei Yuan , Lijuan Chang , Zhibing Fu , Xi Yang , Xingli Jiao , Yongjian Tang , Xichuan Liu , Chaoyang Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1325 -1331.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1325 -1331. DOI: 10.1007/s11595-015-1316-1
Organic Materials

Optimized synthesis of carbon aerogels via ambient pressure drying process as electrode for supercapacitors

Author information +
History +
PDF

Abstract

Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 mA/cm2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950 °C and 4 h, respectively.

Keywords

supercapacitors / carbon aerogels / ambient pressure drying process / activation

Cite this article

Download citation ▾
Lei Yuan, Lijuan Chang, Zhibing Fu, Xi Yang, Xingli Jiao, Yongjian Tang, Xichuan Liu, Chaoyang Wang. Optimized synthesis of carbon aerogels via ambient pressure drying process as electrode for supercapacitors. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(6): 1325-1331 DOI:10.1007/s11595-015-1316-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan J, Liu J P, Fan Z J, et al. High-Performance Supercapacitor Electrodes Based on Highly Corrugated Graphene Sheets[J]. Carbon, 2012, 50(6): 2179-2188.

[2]

Yang KL, Sotira Y, Costas T. Electrosorption Capacitance of Nanostructured Carbon Aerogel Obtained by Cyclic Voltammetry[J]. Electroanal. Chem., 2003, 540: 159-167.

[3]

Li J, Wang XY, Wang Y, et al. Studies on Preparation and Performances of Carbon Aerogel Electrodes For the Application of Supercapacitor[J]. J. Power Sources, 2006, 158(1): 784-788.

[4]

Bordjiba T, Mohamedi M, Dao LH. Synthesis and Electrochemical Capacitance of Binderless Nanocomposite Electrodes Formed by Dispersion of Carbon Nanotubes and Carbon Aerogels[J]. J. Power Sources, 2007, 172(2): 991-998.

[5]

Zeng XH, Wu DC, Fu RW, et al. Preparation and Electrochemical Properties of Pitch-based Activated CarbonAerogels[J]. Electrochim. Acta, 2008, 53(18): 5711-5715.

[6]

Jänes A, Kurig H S, Lust E. Characterisation of Activated Nanoporous Carbon for Supercapacitor Electrode Materials[J]. Carbon, 2007, 45(6): 1226-1233.

[7]

Biener J, Stadermann M, Suss M. Advanced Carbon Aerogels for Energy Applications[J]. Energy Environ. Sci., 2011, 4(3): 656-667.

[8]

Lee J Y, An K H, Heo J K, et al. Fabrication of Supercapacitor Electrodes Using Fluorinated Single-Walled Carbon Nanotubes[J]. J. Phys. Chem.B., 2003, 107(34): 8812-8815.

[9]

Kimizuka O, Tanaike O, Yamashita J, et al. Electrochemical Doping of Pure Single-walled Carbon Nanotubes Used as Supercapacitor Electrodes[J]. Carbon, 2008, 46(14): 1999-2001.

[10]

Lei ZB, Christov N, Zhao XS. Intercalation of Mesoporous Carbon Spheres Between Reduced Graphene Oxide Sheets for Preparing Highrate Supercapacitor Electrode[J]. Energy Environ. Sci., 2010, 4(12): 1866-1873.

[11]

Le LT, Ervin MH, Qiu HW, et al. Graphene Supercapacitor Electrodes Fabricated by Inkjet Printing and Thermal Reduction of Graphene Oxide[J]. Electrochem. Commun., 2011, 13(4): 355-358.

[12]

Mishra AK, Ramaprabhu S. Functionalized Graphene-based Nanocomposites for Supercapacitor Application[J]. J. Phys. Chem. C., 2011, 115(29): 14006-14013.

[13]

Liu CG, Yu ZN, Neff D, et al. Graphene-Based Supercapacitor with an Ultrahigh Energy Density[J]. Nano Lett., 2010, 10(12): 4863-4868.

[14]

Zhang ZJ, Zhu YJ, Bao J, et al. Structural and Electrochemical Performance of Additives-doped a-Ni(OH)2[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2012, 27(3): 538-541.

[15]

Liu HD, Huang JM, Li XL, et al. Graphene as a High-capacity Anode Material for Lithium Ion Batteries[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28(2): 220-223.

[16]

Zhao YL, Feng JG, Mai LQ, et al. Self-adaptive Strain-relaxation Optimization for High-energy Lithium Storage Material Through Crumpling of Graphene[J]. Nature Communications, 2014, 5: 4565.

[17]

Mai LQ, Li H, Zhao YL, et al. Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor[J]. Scientific Reports, 2013, 3: 1718.

[18]

Lee YJ, Jung JC, Park SY, et al. Preparation and Characterization of Metal-doped Carbon Aerogel for Supercapacitor[J]. Curr. Appl. Phys., 2010, 10(3): 947-951.

[19]

Lv GF, Wu DC, Fu RW, et al. Preparation and Electrochemical Characterizations of MnO2-dispersed Carbon Aerogel as Supercapacitor Electrode Material[J]. J. Non-Cryst. Solids, 2009, 355(50–51): 2461-2465.

[20]

Li J, Wang XY, Wang Y, et al. Structure and Electrochemical Properties of Carbon Aerogels Synthesized at Ambient Temperatures as Supercapacitors[J]. J. Non-Crystalline Solids, 2008, 354(1): 19-24.

[21]

Kim SJ, Hwang SW, Hyun SH. Preparation of Carbon Aerogel Electrodes for Supercapacitor and Their Electrochemical Characteristics[J]. Mater. Sci., 2005, 40(3): 725-731.

[22]

Saliger R, Bock V, Petricevic R, et al. Carbon Aerogels From Dilute Catalysis of Resorcinol with Formaldehyde[J]. J. Non-Cryst. Solids, 1997, 221(2–3): 144-150.

[23]

Liu XC, Yuan L, Wang CY, et al. Preparation of High Specific Surface Area Carbon Aerogels by Conventional Drying and Their Performance in Microstructure[J]. High Power Laser and Particle Beams, 2012, 24(02): 370-374.

[24]

Sonwane CG, Bhatia SK. Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms[J]. J. Phys.Chem. B., 2000, 104(39): 9099-9110.

[25]

Zhao YM, Liu L, Xu J, et al. High-performance Supercapacitors of Hydrous Ruthenium Oxide/mesoporous Carbon Composites[J]. J. Solid State Electr., 2007, 11(2): 283-290.

[26]

Tian YM, Song Y, Tang ZH, et al. Influence of High Temperature Treatment of Porous Carbon on the Electrochemical Performance in Supercapacitor[J]. J. Power Source, 2008, 184(2): 675-681.

[27]

Nian YR, Teng H. Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance[J]. J. Electrochem. Soc., 2002, 149(8): 1008-1014.

[28]

Chmiola J, Yushin G, Dash R, et al. Effect of Pore Size and Surface Area of Carbide Derived Carbons on Specific Capacitance[J]. J. Power Sources, 2006, 158(1): 765-772.

[29]

Qasim M, Hyung JY, Woo S K, et al. Highly Uniform Ddeposition of MoO3 Nanodots On Multiwalled Carbon Nanotubes for Improved Performance of Supercapacitors[J]. J. Power Sources, 2013, 235(1): 187-192.

[30]

Li JT, Zhao W, Huang FQ, et al. Single — crystalline Ni(OH)2 and NiO Nanoplatelet Arrays as Supercapacitor Electrodes[J]. Nanoscale, 2011, 3(12): 5103-5109.

[31]

Xiang CC, Ming L, Zhi MJ, et al. A Reduced Graphene Oxide/ Co3O4 Composite for Supercapacitor Electrode[J]. J. Power Sources, 2013, 226(15): 65-70.

[32]

Meher SK, Justin P, Ranga RG. Pine-cone Morphology and Pseudocapacitive Behavior of Nanoporous Nickel Oxide[J]. Electrochim. Acta, 2010, 55(28): 8388-8396.

[33]

Meher SK, Ranga RG. Enhanced Activity of Microwave Synthesized Hierarchical MnO2 for High Performance Supercapacitor Applications[J]. J. Power Sources, 2012, 215: 317-328.

[34]

Lang XY, Hirata A, Fujita T, et al. Nanoporous Metal/oxide Hybrid Electrodes for Electrochemical Supercapacitors[J]. Nat. Nanotech., 2011, 6(4): 232-236.

[35]

Xiao W, Xia H, Fuh JYH, et al. Electrochemical Synthesis and Supercapacitive Properties of e-MnO2 with Porous/Nanoflaky Hierarchical Architectures[J]. J. Electrochem. Soc., 2009, 156(7): 627-633.

[36]

Sumboja A, Tefashe UM, Wittstock G, et al. Monitoring Electroactive Ions at Manganese Dioxide Pseudocapacitive Electrodes with Scanning Electrochemical Microscope for Supercapacitor Electrodes[J]. J. Power Sources, 2012, 207: 205-211.

[37]

Kang J, Wen J, Jayaram SH, et al. Electrochemical Characterization and Equivalent Circuit Modeling of Single-walled Carbon Nanotube (SWCNT) Coated Electrodes[J]. J. Power Sources, 2013, 234: 208-216.

[38]

Chen J, Huang KL, Liu SQ, et al. Electrochemical Supercapacitor Behavior of Ni3(Fe(CN)6)2(H2O) Nanoparticles[J]. J. Power Sources, 2009, 186(2): 565-569.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/