Nanocomposites of a silicon-containing arylacetylene resin with octakis(dimethylsiloxy)octasilsesquoixane

Yan Zhou , Xiaojun Bu , Farong Huang , Lei Du , Guozheng Liang

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1310 -1316.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1310 -1316. DOI: 10.1007/s11595-015-1313-4
Organic Materials

Nanocomposites of a silicon-containing arylacetylene resin with octakis(dimethylsiloxy)octasilsesquoixane

Author information +
History +
PDF

Abstract

Nanocomposites (PMSEPE/Q8M8 H) were prepared via solution blending of octakis(dimethylsiloxy)octasilsesquoixane (Q8M8 H) into poly(dimethylsilyleneethynylenephenyleneethynyle ne) (PMSEPE). PMSEPE/Q8M8 H nanocomposites were characterized by Fourier transform infrared (FT-IR) spectroscopy, rheological measurement, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The experimental results show that the hydrosilylation reaction in PMSEPE/Q8M8 H nanocomposites occurs slowly exceeding 180 °C. PMSEPE/Q8M8 H nanocomposites can be cured at temperatures less than 260 °C and the cube structure of Q8M8 H keeps stable during the curing process. POSS domains are evenly dispersed in the cured nanocomposite. However, serious aggregation of POSS occurs at 15% Q8M8 H content. The thermal and thermooxidative stabilities of PMSEPE/Q8M8 H nanocomposites obviously depend on the content of Q8M8 H. The incorporation of Q8M8 H can effectively enhance the thermal and thermooxidative stabilities of cured PMSEPE. PMSEPE/Q8M8 H nanocomposites can be the candidates for applications in high temperature environment.

Keywords

silicon-containing arylacetylene resin / POSS / nanocomposite / thermal stability / hydrosilylation

Cite this article

Download citation ▾
Yan Zhou, Xiaojun Bu, Farong Huang, Lei Du, Guozheng Liang. Nanocomposites of a silicon-containing arylacetylene resin with octakis(dimethylsiloxy)octasilsesquoixane. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(6): 1310-1316 DOI:10.1007/s11595-015-1313-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sellinger A, Laine RM. Silsesquioxanes as Synthetic Platforms. Thermally Curable and Photocurable Inorganic/Organic Hybrids[J]. Macromolecules, 1996, 29(6): 2327-2330.

[2]

Zhang CX, Laine RM. Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8: Octa(3-hydroxypropyldimethylsiloxy) octasilsesquioxane and Its Octamethacrylate Derivative as Potential Precursors to Hybrid Nanocomposites[J]. J. Am. Chem. Soc., 2000, 122(29): 6979-6988.

[3]

Zheng L, Farris RJ, Coughlin EB. Synthesis of Polyethylene Hybrid Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared with Ring-opening Metathesis Copolymerization[J]. J. Polym. Sc.i Pol. Chem., 2001, 39(17): 2920-2928.

[4]

Tamaki R, Choi JW, Laine RM. A Polyimide Nanocomposite From Octa(aminophenyl)silsesquioxane[J]. Chem. Mater., 2003, 15(3): 793-797.

[5]

Yue K, He JL, Liu C, et al. Anionic Synthesis of a “Clickable” Middlechain Azidefunctionalized Polystyrene and Its Application in Shape Amphiphiles[J]. Chinese J. Polym. Sci., 2013, 31(1): 71-82.

[6]

Fan HB, Yang RJ, Li XM. Organic/Inorganic Hybrid Epoxy Nanocomposites Based on Octa(aminophenyl)silsesquioxane[J]. Chinese J. Polym. Sci., 2013, 31(1): 148-158.

[7]

Xu HY, Kuo SW, Lee JS, et al. Preparations, Thermal Properties, and Tg Increase Mechanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes[J]. Macromolecules, 2002, 35(23): 8788-8793.

[8]

Wang X, Guang SY, Xu HY, et al. Preparation and Properties of Electron Injecting Molecular Hybrid Materials with High Thermal Performance[J]. J. Mater. Chem., 2011, 21(34): 12941-12948.

[9]

Huang JC, He CB, Liu XM, et al. Organic-Inorganic Nanocomposites from Cubic Silsesquioxane Epoxides: Direct Characterization of Interphase, and Thermomechanical Properties[J]. Polymer, 2005, 46(18): 7018-7027.

[10]

Pan GR, Mark JE, Schaefer DW. Synthesis and Characterization of Fillers of Controlled Structure Based on Polyhedral Oligomeric Silsesquioxane Cages and Their Use in Reinforcing Siloxane Elastomers[J]. J. Polym. Sci. Pol. Phys., 2003, 41(21): 3314-3323.

[11]

Devaux E, Rocher M, Bourbigot S. Polyurethane/Clay and Polyurethane/ POSS Nanocomposites as Flame Retarded Coating for Polyester and Cotton Fabrics[J]. Fire Mater., 2002, 26(4): 149-154.

[12]

Gonzalez RI, Phillips SH, Hoflund GB. In Situ Oxygen-atom Erosion Study of Polyhedral Oligomeric Silsesquioxane-Siloxane Copolymer[J]. J. Spacecraft Rockets, 2000, 37(4): 463-467.

[13]

Leu CM, Chang YT, Wei KH. Polyimide-Side-Chain Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-Dielectric Film Applications[J]. Chem. Mater., 2003, 15(19): 3721-3727.

[14]

Choi JW, Yee AF, Laine RM. Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa(dimethylsiloxyethy lcyclohexylepoxide)-silsesquioxane[J]. Macromolecules, 2003, 36(15): 5666-5682.

[15]

Toepfer O, Neumann D, Choudhury NR, et al. Organic-Inorganic Poly(methyl methacrylate) Hybrids with Confined Polyhedral Oligosilsesquioxane Macromonomers[J]. Chem. Mater., 2005, 17(5): 1027-1035.

[16]

Chen WY, Wang YZ, Kuo SW, et al. Thermal and Dielectric Properties and Curing Kinetics of Nanomaterials Formed from Poss-Epoxy and Meta-phenylenediamine[J]. Polymer, 2004, 45(20): 6897-6908.

[17]

Ye YS, Chen WY, Wang YZ. Synthesis and Properties of Low-Dielectric-Constant Polyimides with Introduced Reactive Fluorine Polyhedral Oligomeric Silsesquioxanes[J]. J. Polym. Sci. Pol. Chem., 2006, 44(18): 5391-5402.

[18]

Itoh M, Mitsuzuka M, Iwata K, et al. A Novel Synthesis and Extremely High Thermal Stability of Poly[(phenylsilylene)ethynylene-1, 3-phenyleneethynylene] [J]. Macromolecules, 1994, 27(26): 7917-7919.

[19]

Itoh M, Inoue K, Iwata K, et al. A Heat-Resistant Silicon-Based Polymer[J]. Adv. Mater., 1997, 9(15): 1187-1190.

[20]

Buvat P, Jousse F, Delnaud L, et al. Synthesis and Properties of New Processable Type Polyarylacetylenes[C]. Long Beach: Int. SAMPE Symp. Exhib., 2001, 46(1): 134-144.

[21]

Buvat P, Levassort C, Jousse F. Poly(silyleneethynylenephenyleneethyny lene) and Methods for Preparing Same, 2001

[22]

Wang F, Zhang J, Huang JX, et al. Synthesis and Characterization of Poly(dimethylsilyleneethynylenephenyleneethynylene) Terminated with Phenylacetylene[J]. Polym. Bull., 2006, 56(1): 19-26.

[23]

Zhang J, Huang JX, Zhou W, et al. Fiber Reinforced Silicon-Containing Arylacetylene Resin Composites[J]. Express Polym. Lett., 2007, 1(12): 831-836.

[24]

Huang JX, Du W, Zhang J, et al. Study on the Copolymers of Silicon-Containing Arylacetylene Resin and Acetylene-Functional Benzoxazine[J]. Polym. Bull., 2009, 62(2): 127-138.

[25]

Wang CF, Zhou Y, Huang FR, et al. Synthesis and Characterization of Thermooxidatively Stable Poly(dimethylsilyleneethynylenephenylenee thynylene) with Carborane Units[J]. React. Funct. Polym., 2011, 71(8): 899-904.

[26]

Jiang ZY, Zhou Y, Huang FR, et al. Characterization of a Modified Silicon-Containing Arylacetylene Resin with POSS Functionally[J]. Chinese J. Polym. Sci., 2011, 29(6): 726-731.

[27]

Gao Y, Zhou Y, Huang FR, et al. Preparation and Properties of Silicon-Containing Arylacetylene Resin/Benzoxazines Blends[J]. High Perform. Polym., 2013, 25(4): 445-453.

[28]

Zhou Y, Huang FW, Huang FR, et al. Preparation and Properties of Silicon-Containing Arylacetylene Resins with Octa(maleimidophenyl) silsesquioxane[J]. Adv. Mater. Res., 2012, 557–559: 1152-1156.

[29]

Morh M, Casado CM, Cuadrado I. Ferrocenyl Substituted Octakis(dimethylsi1oxy)octasilsesquioxanes: a New Class of Supramolecular Organometallic Compounds. Synthesis, Characterization, and Electrochemistry[J]. Organometallics, 1993, 12(11): 4327-4333.

[30]

Provatas A, Luft M, Mu JC, et al. Silsesquioxanes: Part I: A Key Intermediate in the Building of Molecular Composite Materials[J]. J. Organomet. Chem., 1998, 565(1–2): 159-164.

[31]

Carmo DR, Paim LL, Filho NLD, et al. Preparation, Characterization and Application of a Nanostructured Composite: Octakis(cyanopropy ldimethylsiloxy)-octasilsesquioxane[J]. Appl. Surf. Sci., 2007, 253(7): 3683-3689.

[32]

Kuroki S, Okita K. Thermosetting Mechanism Study of Poly[(phenylsilylene)ethynylene-1, 3-phenyleneethynylene] by Solid-State NMR Spectroscopy and Computational Chemistry[J]. Macromolecules, 1998, 31(9): 2804-2808.

[33]

Zhang LL, Gao F, Wang CF, et al. Synthesis and Characterization of Poly[(methylsilyleneethynylenephenyleneethynylene)-co-(dimethylsilyle neethynylenephenyleneethynylene)]s[J]. Chinese J. Polym. Sci., 2010, 28(2): 199-207.

[34]

Lee YJ, Kuo SW, Su YC, et al. Syntheses, Thermal Properties, and Phase Morphologies of Novel Benzoxazines Functionalized with Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites[J]. Polymer, 2004, 45(18): 6321-6331.

[35]

Lee YJ, Kuo SW, Huang CF, et al. Synthesis and Characterization of Polybenzoxazine Networks Nanocomposites Containing Multifunctional Polyhedral Oligomeric Silsesquioxane (POSS)[J]. Polymer, 2006, 47(12): 4378-4386.

[36]

Zheng L, Kasi RM, Farris RJ, et al. Synthesis and Thermal Properties of Hybrid Copolymers of Syndiotactic Polystyrene and Polyhedral Oligomeric Silsesquioxane[J]. J. Polym. Sci. Pol. Chem., 2002, 40(7): 885-891.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/