Crushing characteristics of filament wound carbon fiber/epoxy tube under quasi-static compression condition
Jinming Zhu , Wenbin Li , Guang Yang , Xiaolong Jia , Xiaoping Yang
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1225 -1228.
Crushing characteristics of filament wound carbon fiber/epoxy tube under quasi-static compression condition
We investigated the effect of structural factor and amide grafted multi-walled carbon nanotubes (MWNTs-NH2) on crushing characteristics of filament wound CFRP tube under quasi-static compression conditon. It was found that CFRP tubes sequentially showed the brittle fracturing mode, the local buckling fracturing mode and transverse shearing fracturing mode with increasing winding angle, respectively, with the characterizations by mechanical testing, SEM and optical microscopy. Moreover, crack propagation initiated by pre-crack and subsequent failure in the tube were strongly dependent on pre-crack angle due to deflection and penetration competition of crack evolution. The simulated compression failure behavior correlated well with the experimental results, revealing that the Chang-Chang failure criterion was effective in representing the quasistatic crushing characteristics of the tube. In addtion, the MWNTs-NH2 were sucessfully obtained by multistep functionization. The compressvie properties of the tubes were significantly improved by the addition of the MWNTs-NH2 due to their uniform dispersion and high interfacial chemical reactivity, whereas the as-received MWNTs and other functionalized MWNTs were not as effective.
winding angle / pre-crack angle / crushing characteristics / MWNTs
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
/
| 〈 |
|
〉 |