Preparation and aqueous durability of Sr incorporation into rutile TiO2

Kuibao Zhang , Guanjun Wen , Dan Yin , Haibin Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1179 -1183.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1179 -1183. DOI: 10.1007/s11595-015-1292-5
Advanced Materials

Preparation and aqueous durability of Sr incorporation into rutile TiO2

Author information +
History +
PDF

Abstract

TiO2 was employed as the waste form for disposal of simulated nuclide Sr. Preparation of Sr bearing rutile was explored under different sintering temperatures and Sr contents. The optimal treatment temperature was confirmed as 1 300 °C for the incorporation of SrO in rutile TiO2. Perovskite type SrTiO3 was prepared as the resultant product. The limited containment capacity of SrO in rutile was speculated to be 56.5wt%. As the SrO content increases, the as-synthesized sample exhibits more porosity because SrTiO3 phase demonstrates higher density than rutile and SrO. The 28 day normalized leaching rate (LRi) of Sr and Ti will decrease congruously as the SrO incorporation increases. The LRSr value is lower than 0.1 g·m-2·d-1, which is about 3 orders of magnitude higher than the LRTi value.

Keywords

rutile / Sr / immobilization / leaching rate

Cite this article

Download citation ▾
Kuibao Zhang, Guanjun Wen, Dan Yin, Haibin Zhang. Preparation and aqueous durability of Sr incorporation into rutile TiO2. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(6): 1179-1183 DOI:10.1007/s11595-015-1292-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

International Atomic Energy Agency. Design and Operation of High Level Waste, Vitrification and Storage Facility, 1977

[2]

Ojovan MI, Lee WE. An Introduction to Nuclear Waste Immobilization, 2005 Oxford: Elsevier Ltd, UK. 213-267.

[3]

Caurant D, Loiseau P, Majèrus O, et al. Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes, 2009 New York: Nova Science Publishers.

[4]

Donald IW, Metcalfe BL, Taylor RNJ. The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses [J]. J. Mater. Sci., 1997, 32: 5851-5887.

[5]

Loiseau P, Caurant D, Majerus O, et al. Crystallization Study of (TiO2, ZrO2)-Rich SiO2-Al2O3-CaO Glasses. Part II. Surface and Internal Crystallization Processes Investigated by Differential Thermal Analysis (DTA) [J]. J. Mater. Sci., 2003, 38: 843-852.

[6]

Caurant D, Majérus O, Loiseau P, et al. Crystallization of Neodymiumrich Phases in Silicate Glasses Developed for Nuclear Waste Immobilization [J]. J. Nucl. Mater., 2006, 354: 143-162.

[7]

Ringwood AE, Kesson SE, Ware NG, et al. Immobilisation of High Level Nuclear Reactor Wastes in SYNROC [J]. Nature, 1979, 278: 219-223.

[8]

Franck P, John MH, Urs S. The Current State and Future of Accessory Mineral Research [J]. Chem. Geol., 2002, 191: 3-24.

[9]

Ringwood AE, Kesson SE, Reeve KD, et al. [M]// Lutze W, Ewing RC, ed. Radioactive Waste Forms for the Future. Armsterdam: North Holland, 1998: 233–334

[10]

Vance ER. Development of Ceramic Waste Forms for High-Level Nuclear Waste Over the Last 30 Years [J]. Mater. Res. Soc. Symp. Proc., 2007, 985: 135-140.

[11]

Weber WJ, Navrotsky A, Stefanovsky S, et al. Materials Science of High-Level Nuclear Waste Immobilization [J]. MRS Bull., 2009, 34: 46-53.

[12]

Li FX, Lu P, Sickafus KE. Effects of Xe-ion Irradiation at High Temperature on Single Crystal Rutile [J]. J. Nucl. Mater., 2002, 306: 121-125.

[13]

Kuo EY, Qin MJ, Thorogood GJ, et al. Technetium and Ruthenium Incorporation into Rutile TiO2 [J]. J. Nucl. Mater., 2013, 441: 380-389.

[14]

Stewart MWA, Vance ER, Day RA. Titanate Wasteforms for Tc-99 Immobilization[C]. WM’04 Conference WM-4362, 2004

[15]

Carter ML, Stewart MWA, Vance ER, et al. HIPed Tailored Waste Forms for the Immobilization of Cs, Sr and Tc, 2007 9-13.

[16]

Zhang RZ. Management of Radioactive Wastes using Self-Propagating High-Temperature Synthesis, 2009 Beijing: Peking University Press. 153-205.

[17]

Campbell J, Hoenig C, Bazan F, et al. Properties of SYNROC-D Nuclear Waste Form: A State-of-the-art Review, 1981 California: Springfield.

[18]

Smith KL, Lumpkin GR, Blackford MG, et al. The Durability of Synroc [J]. J. Nucl. Mater., 1992, 190: 287-294.

[19]

Zhang Y, Stewart MWA, Li H, et al. Zirconolite-Rich Titanate Ceramics for Immobilisation of Actinides-Waste form/HIP Can Interactions and Chemical Durability [J]. J. Nucl. Mater., 2009, 395: 69-74.

[20]

ASTM C 1220-98 Standard Test Method for Static Leaching of Monolithic Wasteforms for Disposal of Radioactive Waste, 1998

[21]

Hsiang HI, Lin SC. Effects of Aging on Nanocrystalline Anatase-to-Rutile Phase Transformation Kinetics[J]. Ceram. Int., 2008, 34: 557-561.

[22]

Potzger K, Ostena J, Levinb AA, et al. Defect-Induced Ferromagnetism in Crystalline SrTiO3 [J]. J. Mag. Magn. Mater., 2011, 323: 1551-1562.

[23]

Begg BD, Vance ER, Conradson SD. The Incorporation of Plutonium and Neptunium in Zirconolite and Perovskite [J]. J. Alloys Compds., 1998, 271: 221-226.

[24]

Zhang RZ, Guo ZM, Jia GY. Immobilization of Nuclear Waste Strontia by Perovskite [J]. J. Chin. Ceram. Soc., 2005, 33: 1045-1048.

[25]

Howard SA, Yau JK, Anderson HU. Structural Characteristics of Sr1-xLaxTi3+δ as a Function of Oxygen Partial Pressure at 1400°C [J]. J. Appl. Phys., 1989, 65: 1492.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/