Polyaniline Nanotube-ZnO composite materials: Facile synthesis and application

Fang Gao , Yang Cheng , Liang An , Ruiqin Tan , Xiaomin Li , Guanghui Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1147 -1151.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1147 -1151. DOI: 10.1007/s11595-015-1286-3
Advanced Materials

Polyaniline Nanotube-ZnO composite materials: Facile synthesis and application

Author information +
History +
PDF

Abstract

Polyaniline nanotubes and PANI-ZnO nanocomposites were prepared by the simplified Template-Free method. The experimental results indicated that the average diameter of Polyaniline nanotubes was approximately 150-200 nm. The average crystallite size of ZnO in PANI-ZnO composites was 27 nm. Moreover, the as-prepared samples were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy(FTIR) and X-ray diffraction (XRD). Photocatalytic properties of the obtained samples were investigated by the photodegradation analysis of orange II and methylene orange dye. The as-prepared PANIZnO nanocomposites exhibited much higher photocatalytic activity than pure PANI nanotubes. During 2 h photocatalytic courses under UV irradiation, the degradation ratios of Orange II and methyl orange using PANIZnO nanocomposites were 90.3% and 84.5%, respectively. Furthermore, this method can be extended to prepare other organic-inorganic semiconductor composites based composite catalysts.

Keywords

polyaniline / nanotube / ZnO / composites / photocatalysis

Cite this article

Download citation ▾
Fang Gao, Yang Cheng, Liang An, Ruiqin Tan, Xiaomin Li, Guanghui Wang. Polyaniline Nanotube-ZnO composite materials: Facile synthesis and application. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(6): 1147-1151 DOI:10.1007/s11595-015-1286-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tarek A, Gad A, Shigeru K. Role of Core Diameter and Silica Content in Photocatalytic Activity of TiO2/SiO2/Fe3O4 Composite[J]. Solid State Sciences, 2007, 9(8): 737-743.

[2]

Liu ZL, Deng JC, Deng JJ, Li FF. Fabrication and Photocatalysis of CuO/ZnO Nano-composites Via a New Method[J]. Materials Science and Engineering B, 2008, 150(2): 99-104.

[3]

Wang ZH, Jiang TS, Du YM, et al. Synthesis of Mesoporous Titania and the Photocatalytic Activity for Decomposition of Methyl Orange[J]. Materials Letters, 2006, 60(2): 2493-2496.

[4]

Mora ES, Barojas EG, Rojas ER. Morphological, Optical and Photocatalytic Properties of TiO2-Fe2O3 Multilayers[J]. Solar Energy Materials and Solar Cells, 2007, 91(15): 1412-1415.

[5]

Augugliaro V, Litter M, Palmisano L. The Combination of Heterogeneous Photocatalysis with Chemical and Physical Operations: A Tool for Improving the Photoprocess Performance[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7(4): 127-144.

[6]

Yu HG, Yu JG, Cheng B. Synthesis, Characterization and Photocatalytic Activity of Mesoporous Titania Nanorod/Titanate Nanotube Composites[J]. Journal of Hazardous Materials, 2007, 147(1): 581-587.

[7]

Yong JN, Seok IN, Seok SK. Inverted Polymer Solar Cells Including ZnO Electron Transport Layer Fabricated by Facile Spray Pyrolysis[J]. Solar Energy Materials and Solar Cells, 2013, 117: 139-144.

[8]

Shi RX, Yang P, Dong XB. Growth of Flower-like ZnO on ZnO Nanorod Arrays Created on Zinc Substrate Through Low-temperature Hydrothermal Synthesis[J]. Applied Surface Science, 2013, 264: 162-170.

[9]

Ma SS, Li R, Lv CP, et al. Facile Synthesis of ZnO Nanorod Arrays and Hierarchical Nanostructures for Photocatalysis and Gas Sensor Applications[J]. Journal of Hazardous Materials, 2011, 192(2): 730-740.

[10]

Lu JG, Chang P, Fan Z. Quasi-one-dimensional Metal Oxide Materials Synthesis, Properties and Applications[J]. Materials Science and Engineering R, 2006, 52(1): 49-91.

[11]

Nakata K, Fujishima A. TiO2 Photocatalysis: Design and Applications[ J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189.

[12]

Zhao J, Wang L, Yan XQ. Structure and Photocatalytic Activity of Nidoped ZnO Nanorods[J]. Materials Research Bulletin, 2011, 46(8): 1207-1210.

[13]

Fu DY, Han GY, Chang YZ. The Synthesis and Properties of ZnOgraphene Nano-hybrid for Photodegradation of Organic Pollutant in Water[J]. Materials Chemistry and Physics, 2012, 132(2): 673-681.

[14]

Neppolian B, Kim Y, Ashokkumarc M, et al. Preparation and Properties of Visible Light Responsive ZrTiO4/Bi2O3 Photocatalysts for 4-chlorophenol Decomposition[J]. Journal of Hazardous Materials, 2010, 182: 557.

[15]

Chen FN, Yang XD, Henry KC. Photocatalytic Oxidation for Antimicrobial Control in Built Environment: A Brief Literature Overview[J]. Building and Environment, 2010, 45(8): 1747-1754.

[16]

Huang MR, Gu GL, Ding YB. Advanced Solid-Contact Ion Selective Electrode Based on Electrically Conducting Polymers[J]. Chinese Journal of Analytical Chemistry, 2012, 40(9): 1454-1460.

[17]

Wang DS, Wang YH, Li XY. Sunlight Photocatalytic Activity of polypyrrole-TiO2 Nanocomposites Prepared by ‘in situ’ Method[J]. Catalysis Communications, 2008, 9(6): 1162-1166.

[18]

Karthikeyan K, Amaresh S, Aravindan V. Li(Mn1/3Ni1/3Fe1/3)O2-Polyaniline Hybrids as Cathode Active Material with Ultra-fast chargedischarge Capability for Lithium Batteries[J]. Journal of Power Sources, 2013, 232: 240-245.

[19]

Salinas-Torres D, Sieben JM, Lozano-Castelló D. Asymmetric Hybrid Capacitors Based on Activated Carbon and Activated Carbon Fibre-PANI Electrodes[J]. Electrochimica Acta, 2013, 89: 326-333.

[20]

Miroslava T, Jaroslav Stejskal. The Reduction of Silver Nitrate to Metallic Silver Inside Polyaniline Nanotubes and on Oligoaniline Microspheres[J]. Synthetic Metals, 2010, 160(13): 1479-1486.

[21]

Joubert M, Bouhadid M, Begue D. Conducting Polyaniline Composite: From Syntheses in Waterborne Systems to Chemical Sensor Devices[J]. Polymer, 2010, 51(8): 1716-1722.

[22]

Olad A, Barati M, Shirmohammadi H. Conductivity and Anticorrosion Performance of Polyaniline/Zinc Composites: Investigation of Zinc Particle Size and Distribution Effect[J]. Progress in Organic Coatings, 2011, 72(4): 599-604.

[23]

Kang JH, Oh YJ, Paek SM. Electrochromic Device of PEDOT-PANI Hybrid System for Fast Response and High Optical Contrast[J]. Solar Energy Materials & Solar Cells, 2009, 93(12): 2040-2044.

[24]

Crespilho FN, Iost RM, Silmar A. Enzyme Immobilization on Ag Nanoparticles/Polyaniline Nanocomposites[J]. Biosensors and Bioelectronics, 2009, 24(10): 3073-3077.

[25]

Wang ZD, Wang YH, Hao XG. An All Cis-polyaniline Nanotube Film: Facile Synthesis and Applications[J]. Electrochimica Acta, 2013, 99: 38-45.

[26]

Morávková Z, Trchová M, Tomsík E. Enhanced Thermal Stability of Multi-walled Carbon Nanotubes After Coating with Polyaniline Salt[J]. Polymer Degradation and Stability, 2012, 97(8): 1405-1414.

[27]

Yang CC, Gung YJ, Shih CC. Synthesis, Infrared and Microwave Absorbing Properties of (BaFe12O19+BaTiO3)/Polyaniline Composite[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(7): 933-938.

[28]

Fusalba F, Be´langer D. Electrochemical Characterization of Polyaniline-molybdenum Trisulfide Electrode in Non-aqueous Media[J]. Electrochimica Acta, 2000, 45(22): 3877-3883.

[29]

Stejskal J, Trchova M, Kovarova J. The Reduction of Silver Nitrate with Various Polyaniline Salts to Polyaniline-silver Composites[J]. Reactive Functional Polymers, 2009, 69(2): 86-90.

[30]

Park KI, Song HM, Kim Y. Electrochemical Preparation and Characterization of V2O5/Polyaniline Composite Film Cathodes for Li Battery[J]. Electrochimica Acta, 2010, 55: 8023.

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/