Magnetic properties for the single-domain CoFe2O4 nanoparticles synthesized by the hydrothermal method

Zhi Yang , Yue Zhang , Yu Song , Jiawei Wang , Yuang Chen , Zhe Zhang , Nian Duan , Xuefeng Ruan

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1140 -1146.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1140 -1146. DOI: 10.1007/s11595-015-1285-4
Advanced Materials

Magnetic properties for the single-domain CoFe2O4 nanoparticles synthesized by the hydrothermal method

Author information +
History +
PDF

Abstract

The aim of this work was to investigate the size-related magnetism for the single-domain CoFe2O4 nano-particles synthesized using the hydrothermal method. The effects of the reaction temperature and the reaction time on the lattice constants, particle morphologies, and the room-temperature magnetic properties were studied from the X-ray diffraction, the transmission electron microscope, and the vibrating-sample magnetometer. The experimental results show that the samples are composed of CoFe2O4 nano-particles with an average crystallite size (D) smaller than 40 nm, and the magnetic properties of the samples can be manipulated in a wide range: the M S values vary from smaller than 50 emu/g to close to 80 emu/g, and the H C values are between about 200 Oe and 2000 Oe. Additionally, the relationship between H C and 1/D 3/2 satisfies linearship, showing the characteristic of single-domain structure. These results indicate that the single-domain CoFe2O4 nano-particles with size controlled between the superparamagnetic critical size and single-domain critical size can be easily prepared using this hydrothermal method.

Keywords

hydrothermal; ]CoFe2O4; ]single-domain nano-particles; ]magnetic properties

Cite this article

Download citation ▾
Zhi Yang, Yue Zhang, Yu Song, Jiawei Wang, Yuang Chen, Zhe Zhang, Nian Duan, Xuefeng Ruan. Magnetic properties for the single-domain CoFe2O4 nanoparticles synthesized by the hydrothermal method. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(6): 1140-1146 DOI:10.1007/s11595-015-1285-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bader SD. Opportunities in Nanomagnetism[J]. Rev. Mod. Phys., 2006, 78: 11-15.

[2]

Lau JW, Shaw JM. Magnetic Nanostructures for Advanced Technologies: Fabrication, Metrology and Challenges[J]. J. Phys. D: Appl. Phys., 2011, 44: 30303001.

[3]

Ramos AV, Guittet MJ, Moussy JB, et al. Room Temperature Spin Filtering in Epitaxial Cobalt-ferrite Tunnel Barriers[J]. Appl. Phys. Lett., 2007, 91: 30122107.

[4]

Maaz K, Mumtaz A, Hasanain SK, et al. Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route[J]. J. Magn. Magn. Mater., 2007, 308: 2289-2295.

[5]

Chinnasamy CN, Jeyadevan B, Shinoda K, et al. Unusually High Coercivity and Critical Single-domain Size of Nearly Monodispersed CoFe2O4 Nanoparticles[J]. Appl. Phys. Lett., 2003, 83: 142862-2864.

[6]

Qu Y Q, Yang HB, Yang N, et al. The Effect of Reaction Temperature on the Particle Size, Structure and Magnetic Properties of Coprecipitated CoFe2O4 Nanoparticles[J]. Mater. Lett., 2006, 60: 29-30.

[7]

Xiao SH, Jiang WF, Li LY, et al. Low-temperature Auto-combustion Synthesis and Magnetic Properties of Cobalt Ferrite Nanopowder[J]. Mater. Chem. Phys., 2007, 106: 182-187.

[8]

Lee JG, Lee HM, Kim CS, et al. Magnetic Properties of CoFe2O4 Powders and Thin Films Grown by a Sol-gel Method[J]. J. Magn. Magn. Mater., 1998, 177: 900-902.

[9]

Bilecka I, Kubli M, Amstad E, et al. Simultaneous Formation of Ferrite Nanocrystals and Deposition of Thin Films Via a Microwave-assisted Nonaqueous Sol-gel Process[J]. J. Sol-Gel Sci. Technol., 2011, 57: 3313-3322.

[10]

Ayyappan S, Philip J, Raj B. Effect of Digestion Time on Size and Magnetic Properties of Spinel CoFe2O4 Nanoparticles[J]. J. Phys. Chem. C, 2009, 113: 2590-2596.

[11]

Limaye MV, Singh SB, Date SK. High Coercivity of Oleic Acid Capped CoFe2O4 Nanoparticles at Room Temperature[J]. J. Phys. Chem. B, 2009, 113: 279070-279076.

[12]

Chinnasamy CN, Jeyadevan B, Perales-Perez O. Growth Dominant Coprecipitation Process to Achieve High Coercivity at Room Temperature in CoFe2O4 Nanoparticles[J]. IEEE Trans. Magn., 2002, 38: 52640-52642.

[13]

Zhang Y, Yang Z, Yin D, et al. Composition and Magnetic Properties of Cobalt Ferrite Nano-particles Prepared by the Co-precipitation Method[J]. J. Magn. Magn. Mater., 2010, 322: 213470-213475.

[14]

Cannas C, Falqui A, Musinu A, et al. CoFe2O4 Nanocrystalline Powders Prepared by Citrate-gel Methods: Synthesis, Structure and Magnetic Properties[J]. J. Nanoparticle Res., 2006, 8: 2255-2267.

[15]

Júniora AF, de Oliveira Limab EC, Novakc MA, et al. Synthesis of Nanoparticles of CoxFe(3-x)O4 by Combustion Reaction Method[J]. J. Magn. Magn. Mater., 2007, 308: 2198-2202.

[16]

Liu Y, Zhang Y, Feng JD, et al. Dependence of Magnetic Properties on Crystallite Size of CoFe2O4 Nnanoparticles Synthesised by Autocombustion Method[J]. J. Exp. Nanosci., 2009, 4: 2159-2168.

[17]

Zhao D, Wu X, Guan H, et al. Study on Supercritical Hydrothermal Synthesis of CoFe2O4 Nanoparticles[J]. J. of Supercritical Fluids, 2007, 42: 2226-2233.

[18]

Ji GB, Tang SL, Ren SK, et al. Simplified Synthesis of Singlecrystalline Magnetic CoFe2O4 Nanorods by a Surfactant-assisted Hydrothermal Process[J]. J. Cryst. Growth, 2004, 270: 1-2.

[19]

Liu XM, Fu SY, Zhu LP. High-yield Synthesis and Characterization of Monodisperse Sub-microsized CoFe2O4 Octahedra[J]. J. Solid State Chem., 2007, 180: 2461-2466.

[20]

Chen ZT, Gao L. Synthesis and Magnetic Properties of CoFe2O4 Nanoparticles by Using PEG as Surfactant Additive[J]. Mater. Sci. Eng. B, 2007, 141: 1-2.

[21]

Liu Q, Sun JH, Long HR, et al. Hydrothermal Synthesis of CoFe2O4 Nanoplatelets and Nanoparticles[J]. Mater. Chem. Phys., 2008, 108: 2-3.

[22]

Zhao LJ, Zhang HJ, Xing Y, et al. Studies on the Magnetism of Cobalt Ferrite Nanocrystals Synthesized by Hydrothermal Method[J]. J. Solid State Chem., 2008, 181: 2245-2252.

[23]

Zhang Y, Liu Y, Fei CL, et al. The Temperature Dependence of Magnetic Properties for Cobalt Ferrite Nanoparticles by the Hydrothermal Method[J]. J. Appl. Phys., 2010, 108: 8 084312

[24]

Zhang Y, Fei CL, Liu Y, et al. The Effect of Surface Modification on the Magnetic Properties of CoFe2O4 Nano-Particles Synthesized by the Hydrothermal Method[J]. J. Nanosci. Nanotech., 2010, 10: 106395-106399.

[25]

Zhang Y, Liu Y, Yang Z, et al. Synthesis of CoFe2O4 Nanoparticles with Tunable Magnetism by the Modified Hydrothermal Method[J]. J. Nanoparticle Res., 2011, 13: 104557-104563.

[26]

Sun SH, Zeng H, Robinson DB, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn Nanoparticles[J]. J. Am. Chem. Soc., 2004, 126: 1273-1279.

[27]

Dai Q, Berman D, Virwani K, et al. Self-Assembled Ferrimagnet Polymer-Composites for Magnetic Recording Media[J]. Nano Lett., 2010, 10: 23216-23221.

[28]

Naseri MG, Saion EB, Ahangar HA, et al. Simple Synthesis and Characterization of Cobalt Ferrite Nanoparticles by a Thermal Treatment Method[J]. J. Nanomater., 2010, 2010: 75907686.

[29]

Chiu WS, Radiman S, Abd-Shutor R, et al. Tunable Coercivity of CoFe2O4 Nanoparticles via Thermal Annealing Treatment[J]. J. Alloy. Compd., 2008, 459: 1-2.

[30]

Liu BH, Ding J, Dong ZL, et al. Microstructural Evolution and Its Influence on the Magnetic Properties of CoFe2O4 Powders during Mechanical Milling[J]. Phys. Rev. B, 2006, 74: 18184427.

[31]

Tung LD, Kolesnichenko V, Caruntu D, et al. Magnetic Properties of Ultrafine Cobalt Ferrite Particles[J]. J. Appl. Phys., 2003, 93: 107486-107488.

[32]

Kneller EF, Luborsky FE. Particle Size Dependence of Coercivity and Remanence of Single Domain Particles[J]. J. Appl. Phys., 1963, 34: 3656-3658.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/