Nanocomposite membranes based on perfluorosulfonic acid/ceramic for proton exchange membrane fuel cells

Qiong Li , Guangjin Wang , Hong Ye , Shilin Yan

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1125 -1129.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (6) : 1125 -1129. DOI: 10.1007/s11595-015-1282-7
Advanced Materials

Nanocomposite membranes based on perfluorosulfonic acid/ceramic for proton exchange membrane fuel cells

Author information +
History +
PDF

Abstract

Perfluorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Nafion membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Nafion membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

Keywords

proton exchange membrane / ceramic / sol-gel process / ionic conductivity

Cite this article

Download citation ▾
Qiong Li, Guangjin Wang, Hong Ye, Shilin Yan. Nanocomposite membranes based on perfluorosulfonic acid/ceramic for proton exchange membrane fuel cells. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(6): 1125-1129 DOI:10.1007/s11595-015-1282-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberti G, Casciola M. Composite Membranes for Medium-Temperature PEM Fuel Cells [J]. Annu. Rev. Mater. Res., 2003, 33: 129-154.

[2]

Zhang JL, Xie Z, Zhang JJ, et al. High Temperature PEM Fuel Cells [J]. J. Power Sources, 2006, 160: 872-891.

[3]

Li QF, He RH, Gao J, et al. The CO Poisoning Effect in Polymer Electrolyte Membrane Fuel Cells Operational at Temperatures up to 200°C [J]. J. Electrochem. Soc., 2003, 150: A1599-1605.

[4]

Vishnyakov V M. Proton Exchange Membrane Fuel Cells[J]. Vacuum, 2006, 80: 1053-1065.

[5]

Devanathan R. Recent Developments in Proton Exchange Membranes for Fuel Cells[J]. Energy Environ. Sci., 2008, 1: 101-109.

[6]

Sacca A, Gatto I, Carbone A, et al. ZrO2-Nafion Composite Membranes for Polymer Electrolyte Fuel Cells (PEFCs) at Intermediate Temperature [J]. J. Power Sources, 2006, 163: 47-51.

[7]

Chen SY, Han CC, Tsai CH, et al. Effect of Morpholo- gical Properties of Ionic Liquid-Templated Mesoporous Anatase TiO2 on Performance of PEMFC With Nafion/TiO2 Composite Membrane at Elevated Temperature and Low Relative Humidity [J]. J. Power Sources, 2007, 171: 363-372.

[8]

Mauritz KA, Payne JT. Perfluorosulfonate Ionomer/Silicate Hybrid Membranes via Base-Catalyzed in situ Sol-Gel Processes for Tetraethylorthosilicate[J]. J. Membr. Sci., 2000, 168: 39-51.

[9]

Alberti G, Casciola M. Solid State Protonic Conductors Present Main Applications and Future Prospects [J]. Solid State Ionics, 2001, 145: 3-16.

[10]

Adjemian KT, Dominey R, Krishnan L, et al. Function and Characterization of Metal Oxide Nafion Composite Membranes for Elevated Temperature H2/O2 PEM Fuel Cells [J]. Chem. Mater., 2006, 18: 2238-2248.

[11]

Jalani NH, Dunn K, Datta R. Synthesis and Characterization of Nafion-MO2 (M=Zr, Si, Ti) Nanocom-Posite Membranes for Higher Temperature PEM Fuel Cells [J]. Electrochim Acta, 2005, 51: 553-560.

[12]

Apchatachutapan W, Moore RB, Mauritz KA. Asymmetric Nafion/Zirconium Oxide Hybrid Mem- branes via in situ Sol-Gel Chemistry [J]. J. Appl. Polym. Sci., 1996, 62: 417-426.

[13]

Tang HL, Wan ZH, Pan M, et al. Self-assembled Nafion-Silica Nanoparticles for Elevated-High Temper- ature Polymer Electrolyte Membrane Fuel Cells [J]. Electrochem. Commun, 2007, 9: 2003-2008.

[14]

Pereira F, Valle K, Belleville P, et al. Advanced Mesostructured Hybrid Silica-Nafion Membranes for High-Performance PEM Fuel Cell [J]. Chem. Mater., 2008, 20: 1710-1718.

[15]

Zhang HL, Pan JJ, He XC, et al. Zeta Potential of Nafion Molecules in Isopropanol-Water Mixture Solvent [J]. J. Appl. Polym. Sci., 2008, 107: 3306-3309.

[16]

Pan JJ, Zhang HL, Pan M. Self-assembly of Nafion Molecules onto Silica Nanoparticles Formed in situ through Sol-Gel Process [J]. J. Coll. Interf. Sci., 2008, 326(1): 55-60.

[17]

Li K, Ye GB, Pan JJ, et al. Self-Assembled Nafion/Metal Oxide Nanoparticles Hybrid Proton Exchange Membranes[J]. J. Membr. Sci., 2010, 347: 26-31.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/