Microstructure characterization and indentation hardness testing behavior of Mg-8Sn-xAl-1Zn alloys

Weili Cheng , Miao Wang , Chunxiang Xu , Jinshan Zhang , Wei Liang , Bongsun You , Kaibo Nie

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (5) : 1043 -1048.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (5) : 1043 -1048. DOI: 10.1007/s11595-015-1270-y
Article

Microstructure characterization and indentation hardness testing behavior of Mg-8Sn-xAl-1Zn alloys

Author information +
History +
PDF

Abstract

The influence of Al content on microstructure characterization and indentation hardness testing behavior of Mg-8Sn-xAl(x=1 wt%, 2 wt%, 3 wt%)-1Zn alloys was investigated by optical microscope, Pandat software, X-ray diffraction, scanning electron microscope, differential scanning calorimetry and a microhardness testing equipment. The results can be summarized as follows: when the Al content is 1 wt%, the alloy is composed of α-Mg and Mg2Sn phases; while the new phase of Mg x(AlZn)1-x can be observed and the morphology of Mg2Sn phase transfers from the semi-continuous network to the dispersed particles with further addition of Al content to 2 wt% and 3 wt%. The dendrite arm spacing (DAS) deceases firstly and then slightly increases with the increase of Al content. The micro-hardness of Mg-8Sn-xAl(x=1 wt%, 2 wt%, 3 wt%)-1Zn also increases with increasing of Al content. Moreover, the indentation size effect (ISE) in Vickers hardness for Mg-8Sn-1Al-1Zn alloy was observed with the applied test load ranging from 0.490 to 4.903 N.

Keywords

magnesium alloys / microstructure / micro-hardness / indentation size effect

Cite this article

Download citation ▾
Weili Cheng, Miao Wang, Chunxiang Xu, Jinshan Zhang, Wei Liang, Bongsun You, Kaibo Nie. Microstructure characterization and indentation hardness testing behavior of Mg-8Sn-xAl-1Zn alloys. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(5): 1043-1048 DOI:10.1007/s11595-015-1270-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jonghun Y, Sunghyuk P. Forgeability Test of Extruded Mg-Sn-Al-Zn Alloys under Warm Forming Conditions [J]. Mater. Des., 2014, 55: 300-308.

[2]

Gong X B, Li H, Kang S B, et al. Microstructure and Mechanical Properties of Twin-roll Cast Mg-4.5Al-1.0Zn Alloy Sheets Processed by Differential Speed Rolling [J]. Mater. Des., 2010, 31(3): 1581-1587.

[3]

Chen D, Ren Y P, Guo Y, et al. Microstructures and Tensile Properties of As-extruded Mg-Sn Binary Alloys [J]. Trans. Nonferrous Met. Soc. China, 2010, 20(7): 1321-1325.

[4]

Gong X B, Kang S B, Li S, et al. Enhanced Plasticity of Twin-roll Cast ZK60 Magnesium Alloy through Differential Speed Rolling [J]. Mater. Des., 2009, 30(9): 3345-3350.

[5]

Yang M B, Cheng L, Pan F S. Effects of Calcium Addition on As-cast Microstructure and Mechanical Properties of Mg-5Zn-5Sn Alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20(5): 769-775.

[6]

Wei S H, Chen Y G, Tang Y B, et al. Compressive Creep Behavior of As-cast and Aging-treated Mg-5 wt% Sn Alloys [J]. Mater. Sci. Eng. A, 2008, 492(1-2): 20-23.

[7]

Cheng W L P S, Tang W N, et al. Influence of Alloying Elements on Microstructure and Micro-hardness of Mg-Sn-Zn-based Alloys. Trans. Nonferrous Met. Soc. China, 2010, 20(12): 2246-2252.

[8]

Sasaki T T, Oh-ishi K, Ohkubo T, et al. Enhanced Age Hardening Response by the Addition of Zn in Mg-Sn Alloys [J]. Scripta. Mater., 2006, 55(3): 251-254.

[9]

Liu H M, Chen Y G, Tang Y B, et al. The Microstructure, Tensile Properties, and Creep Behavior of as-cast Mg-(1-10)%Sn Alloys [J]. J. Alloys. Compd., 2007, 440(1-2): 122-126.

[10]

Sasaki T T, Yamamoto K, Honma T, et al. A High-strength Mg-Sn-Zn-Al Alloy Extruded at Low Temperature [J]. Scripta. Mater., 2008, 59(10): 1111-1114.

[11]

Qi F G, Zhang D F, Zhang X H, et al. Effect of Sn Addition on the Microstructure and Mechanical Properties of Mg-6Zn-1Mn (wt%) Alloy[J]. J. Alloys. Compd., 2014, 585: 656-666.

[12]

Sasaki T T, Ju J D, Hono K, et al. Heat-treatable Mg-Sn-Zn Wrought Alloy[J]. Scripta. Mater., 2009, 61(1): 80-83.

[13]

Kölemen U, Uzun O, Yilmazlar M, et al. Hardness and Microstructural Analysis of Bi1.6Pb0.4Sr2Ca2-xSmxCu3Oy Polycrystalline Superconductors [J]. J. Alloys. Compd, 2006, 415(1/2): 300-306.

[14]

Gong X, Chou K. Characterizations of Sintered Ti-6Al-4V Powders in Electron Beam Additive Manufacturing[C]. Proc. ASME 2013 Int. Manuf. Sci. Eng. Conf, 2013, 1: V001T01A002.

[15]

Gong X, Anderson T, Chou K. Review on Powder-based Electron Beam Additive Manufacturing Technology [C]. Manuf. Rev., 2012, 2: 1-12.

[16]

Qin F, Gong X, Chou K. Size Effects in Cutting with a Diamond-coated Tool [C]. Proc. ASME 2011 Int. Manuf. Sci. Eng. Conf., 2011, 1: 267-273.

[17]

Valdez S, Suarez M, Fregoso O A, et al. Microhardness, Microstructure and Electrochemical Efficiency of an Al(Zn/xMg) Alloy after Thermal Treatment [J]. J. Mater. Sci. Technol., 2012, 28: 255-260.

[18]

Manika I, Manik J S. Size Effects in Micro-and Nanoscale Indentation [J]. Acta. Mater., 2006, 54(8): 2049-2056.

[19]

Sangwal K, Surowska B, Blaziak P. Relationship between Indentation Size Effect and Material Properties in the Microhardness Measuremen of Some Cobaltbased Alloys [J]. Mater. Chem. Phys., 2003, 80(2): 428-437.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/