A controllable synthetic route for preparing graphene-Cu and graphene-Cu2O nanocomposites using graphene oxide-Cuo as a precursor

Li Chen , Junwu Zhu , Huiping Bi , Xiaoqian Meng , Pengcheng Yao , Qiaofeng Han

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (5) : 947 -950.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (5) : 947 -950. DOI: 10.1007/s11595-015-1255-x
Article

A controllable synthetic route for preparing graphene-Cu and graphene-Cu2O nanocomposites using graphene oxide-Cuo as a precursor

Author information +
History +
PDF

Abstract

The development of convenient method to obtain graphene-based nanocomposites is a key issue for their application. Herein, we described a facile route for synthesizing graphene-Cu and graphene-Cu2O nanocomposites using graphene oxide-CuO as a precursor. Remarkably, the different nanocomposites could be formed just by varying the reaction temperature and time. This work provides a feasible route for the preparation of graphene-based nanocomposites with various constituents.

Keywords

graphene-based nanocomposites / various constituents / precursor

Cite this article

Download citation ▾
Li Chen, Junwu Zhu, Huiping Bi, Xiaoqian Meng, Pengcheng Yao, Qiaofeng Han. A controllable synthetic route for preparing graphene-Cu and graphene-Cu2O nanocomposites using graphene oxide-Cuo as a precursor. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(5): 947-950 DOI:10.1007/s11595-015-1255-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306: 666-669.

[2]

Zhang Y, Tan Y W, Stormer H L, et al. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene[J]. Nature, 2005, 438: 201-204.

[3]

Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based Composite Materials[J]. Nature, 2006, 442: 282-286.

[4]

Geim A K, Novoselov K S. The Rise of Graphene[J]. Nat. Mater., 2007, 6: 183-191.

[5]

Li D, Kaner R B. Graphene-based Materials[J]. Science, 2008, 320: 1170-1171.

[6]

Wang G, Yang J, Park J, et al. Facile Synthesis and Characterization of Graphene Nanosheets[J]. J. Phys. Chem. C, 2008, 112: 8192-8195.

[7]

Li D M, ller M B, Gilje S, et al. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat. Nanotechnol., 2008, 3: 101-105.

[8]

Wu Z S, Wang D W, Ren W, et al. Anchoring Hydrous RuO2 on Graphene Sheets for High-performance Electrochemical Capacitors[J]. Adv. Funct. Mater., 2010, 20: 3595-3602.

[9]

Chen S, Zhu J, Wu X, et al. Graphene Oxide-MnO2 Nanocomposites for Supercapacitors[J]. ACS Nano., 2010, 4: 2822-2830.

[10]

Subrahmanyam K S, Manna A K. A Study of Graphene Decorated with Metal Nanoparticles[J]. Chem. Phys. Lett., 2010, 497: 70-75.

[11]

Muszynski R, Seger B, Kamat P V. Decorating Graphene Sheets with Gold Nanoparticles[J]. J. Phys. Chem. C, 2008, 112: 5263-5266.

[12]

Zhu J W, Zeng Y G, Nie F D, et al. Decorating Graphene Oxide with CuO Nanoparticles in a Water-isopropanol System[J]. Nanoscale, 2010, 2: 988-994.

[13]

Chen S, Zhu J W, Wang X. One-step Synthesis of Graphene-cobalt Hydroxide Nanocomposites and their Electrochemical Properties[J]. J. Phys. Chem. C, 2010, 114: 11829-11834.

[14]

Wu L, Tsui L, Swami N, et al. Photoelectrochemical Stability of Electrodeposited Cu2O Films[J]. J. Phys. Chem. C, 2010, 114: 11 551-11 556.

[15]

Zhang J, Liu J, Peng Q, et al. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors[J]. Chem. Mater., 2006, 18: 867-871.

[16]

Huang H H, Yan F Q, Kek Y M, et al. Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles[J]. Langmuir, 1997, 13: 172-175.

[17]

Xu C, Wang X, Yang L, et al. Fabrication of a Graphene-cuprous Oxide Composite[J]. J. Solid State Chem., 2009, 182: 2486-2490.

[18]

Hara M, Kondo T, Komoda M, et al. Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation[J]. Chem. Commun., 1998 357-358.

[19]

Kim Y H, Lee D K, Jeong B G, et al. Synthesis of Oleate Capped Cu Nanoparticles by Thermal Decomposition[J]. Colloids Surf. A: Phys. Eng. Asp., 2006, 284: 364-368.

[20]

Dhas N A, Raj C P, Gedanken A. Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles[J]. Chem. Mater., 1998, 10: 1446-1452.

[21]

Reetz M T, Helbig W. Size-selective Synthesis of Nanostructured Transition Metal Clusters[J]. J. Am. Chem. Soc., 1994, 116: 7 401-7 402.

[22]

Joshi S, Patil S, Iyer V, et al. Radiation Induced Synthesis and Characterization of Copper Nanoparticles[J]. Nanostruct. Mater., 1998, 10: 1135-1144.

[23]

Pileni M P, Ninham B W, Gulik K T, et al. Direct Relationship between Shape and Size of Template and Synthesis of Copper Metal Particles[J]. Adv. Mater., 1999, 11: 1358-1362.

[24]

Park B K, Jeong S, Kim D, et al. Synthesis and Size Control of Monodisperse Copper Nanoparticles by Polyol Method[J]. J. Colloid Interface Sci., 2007, 311: 417-424.

[25]

Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer Assembly of Ultrathin Composite Films from Micron-sized Graphite Oxide Sheets and Polycations[J]. Chem. Mater., 1999, 11: 771-778.

[26]

Nethravathi C, Rajamathi M. Chemically Modified Graphene Sheets Produced by the Solvothermal Reduction of Colloidal Dispersions of Graphite Oxide[J]. Carbon, 2008, 46: 1994-1998.

[27]

Deng S, Tjoa V, Fan H M, et al. Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-performance NO2 Gas Sensor[J]. J. Am. Chem. Soc., 2012, 134: 4905-4917.

[28]

Ferrari A, Meyer J, Scardaci V, et al. Raman Spectrum of Graphene and Graphene layers[J]. Phys. Rev. Lett., 2006 187 401-187 404.

[29]

Stankovich S, Dikin D A, Piner R D, et al. Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide[J]. Carbon, 2007, 45: 1558-1565.

[30]

Reimann K, Syassen K. Raman Scattering and Photoluminescence in Cu2O under Hydrostatic Pressure[J]. Phys. Rev. B, 1989, 39: 11 113-11 119.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/