Influence of sintering temperature on the structure and high-temperature discharge performance of LiNi1/3Mn1/3Co1/3O2 cathode materials

Zhenjie Wang , Junlin Du , Zhilin Li , Zhu Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (5) : 894 -899.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (5) : 894 -899. DOI: 10.1007/s11595-015-1246-y
Article

Influence of sintering temperature on the structure and high-temperature discharge performance of LiNi1/3Mn1/3Co1/3O2 cathode materials

Author information +
History +
PDF

Abstract

Layered cathode materials of high-temperature lithium batteries, LiNi1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphology and high-temperature discharge performance of these resulting products are investigated by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), laser particle size analysis, galvanostatic and pulse discharge. The results of structural analysis indicate that the sample sintered at 800 °C has the characteristics of good crystallinity, narrow size distribution and large specific surface area at the same time. The discharge experiments also indicate that this sample has the best electrochemical properties, with the maximum discharge capacities of 314.57 and 434.14 mAh·g-1 at 200 and 300 °C respectively and the minimum cell internal resistances at both temperatures.

Keywords

sintering temperature / electrochemical properties / LiNi1/3Mn1/3Co1/3O2 / high-temperature lithium batteries

Cite this article

Download citation ▾
Zhenjie Wang, Junlin Du, Zhilin Li, Zhu Wu. Influence of sintering temperature on the structure and high-temperature discharge performance of LiNi1/3Mn1/3Co1/3O2 cathode materials. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(5): 894-899 DOI:10.1007/s11595-015-1246-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guidotti R A, Reinhardt F W, Odinek J. Overview of High-temperature Batteries for Geothermal and Oil/Gas Borehole Power Sources [J]. J. Power Sources, 2004, 136(2): 257-262.

[2]

Zhang X J, Xu K C, Gao Y C. The Phase Diagram of LiNO3-KNO3 [J]. Thermochim. Acta, 2002, 385(1-2): 81-84.

[3]

Masset P, Guidotti R A. Thermal Activated (Thermal) Battery Technology Part II. Molten Salt Electrolytes [J]. J. Power Sources, 2007, 164(1): 397-414.

[4]

Bolster M E, Staniewics R J. Investigation of Lithium Intercalation Metal Oxides for Thermal Batteries [C], 1990 Cherry Hill, USA: IEEE.

[5]

Ohzuku T, Makimura Y. Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-ion Batteries [J]. Chem. Lett., 2001, 7: 642-643.

[6]

Yabuuchi N, Ohzuku T. Novel Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-ion Batteries [J]. J. Power Sources, 2003, 119: 171-174.

[7]

Fergus J W. Recent Developments in Cathode Materials for Lithium Ion Batteries [J]. J. Power Sources, 2010, 195: 935-954.

[8]

Stewart S G, Srinivasan V, Newman J. Modeling the Performance of Lithium-ion Batteries and Capacitors during Hybrid-electric-vehicle Operation [J]. J. Electrochem. Soc., 2008, 155(9): A664-A671.

[9]

Martha S K, Markevich E, Burgel V, et al. A Short Review on Surface Chemical Aspects of Li Batteries: A Key for a Good Performance [J]. J. Power Sources, 2009, 189: 288-296.

[10]

Martha S K, Sclar H, Framowitz Z S, et al. A Comparative Study of Electrodes Comprising Nanometric and Submicron Particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2 and LiNi0.40Mn0.40Co0.20O2 Layered Compounds [J]. J. Power Sources, 2009, 189: 248-255.

[11]

Kim J M, Chung H T. Role of Transition Metals in Layered Li[Ni,Co,Mn]O2 under Electrochemical Operation [J]. Electrochim. Acta, 2004, 49(21): 3573-3580.

[12]

Whitfield P S, Avidson I J, Cranswick L, et al. Investigation of Possible Superstructure and Cation Disorder in the Lithium Battery Cathode Material LiMn1/3Ni1/3Co1/3O2 Using Neutron and Anomalous Dispersion Powder Diffraction [J]. Solid State Ionics, 2005, 176(5-6): 463-471.

[13]

Cho T H, Park S M, Yoshio M, et al. Effect of Synthesis Condi-tion on the Structural and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Prepared by Carbonate Co-precipitation Method [J]. J. Power Sources, 2005, 142(1-2): 306-312.

[14]

Belharouak I, Sun Y K, Liu J, et al. Li(Ni1/3Co1/3Mn1/3)O2 as a Suitable Cathode for High Power Applications [J]. J. Power Sources, 2003, 123(2): 247-252.

[15]

Yabuuchi N, Ohzuku T. Electrochemical Behaviors of LiCo1/3Nil/3Mnl/3O2 in Lithium Batteries at Elevated Temperatures [J]. J. Power Sources, 2005, 146: 636-639.

[16]

Hwang B J, Tsai Y W, Carlier D, et al. A Combined Computational/ Experimental Study on LiNi1/3Co1/3Mn1/3O2 [J]. Chem. Mater., 2003, 15(19): 3676-3682.

[17]

Li D C, Muta T, Zhang L Q, et al. Effect of Synthesis Method on the Electrochemical Performance of LiNi1/3Mn1/3Co1/3O2 [J]. J. Power Sources, 2004, 132: 150-155.

[18]

He P, Wang H R, Qi L, et al. Electrochemical Characteristics of Layered LiNi1/3Mn1/3Co1/3O2 and with Different Synthesis Conditions [J]. J. Power Sources, 2006, 160: 627-632.

[19]

Li X, Wei Y J, Ehrenberg H, et al. Characterizations on the Structural and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2 Prepared by a Wet-chemical Process [J]. Solid State Ionics, 2008, 178: 1969-1974.

[20]

Shi S J, Tu G P, Tang Y Y, et al. Enhanced Electrochemical Performance of LiF-modified LiNi1/3Mn1/3Co1/3O2 Cathode Materials for Li-ion Batteries[J]. J. Power Sources, 2013, 225: 338-346.

[21]

Guo J, Jiao L F, Yuan H T, et al. Effect of Synthesis Condition on the Structural and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2 Prepared by the Metal Acetates Decomposition Method [J]. Electrochim. Acta, 2006, 51(18): 3731-3735.

[22]

Sathiya M, Prakash A S, Ramesha K, et al. Rapid Synthetic Routes to Prepare LiNi1/3Mn1/3Co1/3O2 as a High Voltage, High-capacity Li-ion Battery Cathode Material [J]. Mater. Res. Bull., 2009, 44(10): 1 990-1 994.

[23]

Xu J T, Chou S L, Gu Q F, et al. The Effect of Different Binders on Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2 Cathode Material in Lithium Ion Batteries [J]. J. Power Sources, 2013, 225: 172-178.

[24]

Deng C, Liu L, Zhou W, et al. Effect of Synthesis Condition on the Structure and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2 Prepared by Hydroxide Co-precipitation Method [J]. Electrochim. Acta, 2008, 53(5): 2441-2447.

[25]

Chen S F. High Temperature Cyclic Performance of LiNi1/3Mn1/3Co1/3O2 Cathode Material for Lithium Ion Battery [D], 2013 Tainan: National University of Tainan.

[26]

He Y S, Ma Z F, Liao X Z, et al. Synthesis and Characterization of Submicron-sized LiNi1/3Mn1/3Co1/3O2 by a Simple Self-propagating Solid-state Metathesis Method[J]. J. Power Sources, 2007, 163: 1 053-1 058.

[27]

Fujii Y, Miura H, Suzuki N, et al. Structural and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2: Calcination Temperature Dependence [J]. J. Power Sources, 2007, 171: 894-903.

[28]

Singh G, Sil A, Ghosh S, et al. Effect of Citric Acid Content on Synthesis of LiNi1/3Mn1/3Co1/3O2 and Its Electrochemical Characteristics [J]. Ceram. Int., 2010, 36(6): 1831-1836.

[29]

Hennings D, Mary W. Thermal Decomposition of (BaTi) Citrates into Barium Titanate [J]. J. Solid State Chem., 1978, 26(4): 329-338.

[30]

Liu H S, Li J, Zhang Z R, et al. The Effects of Sintering Temperature and Time on the Structure and Electrochemical Performance of LiNi0.8Co0.2O2 Cathode Materials Derived from Sol-gel Method [J]. J. Solid State Electrochem., 2003, 7(8): 456-462.

[31]

Chang C C, Kim J Y, Kumta P N. Influence of Crystallite Size on the Electrochemical Properties of Chemically Synthesized Stoichiometric LiNiO2 [J]. J. Electrochem. Soc., 2002, 149(9): A1 114-A1 120.

[32]

Dahn J R, Vonsacken U, Chadwick A V. Structure and Electrochemistry of Li1±yNiO2 and a New Li2NiO2 Phase with the Ni(OH)2 Structure [J]. Solid State Ionics, 1990, 44(1-2): 87-97.

[33]

Ohzuku T, Ueda A, Nagayama M. Electrochemistry and Structural Chemistry of LiNiO2 (R-3m) for 4 Volt Secondary Lithium Cells [J]. J. Electrochem. Soc., 1993, 140(7): 1862-1870.

[34]

Gao Y A, Yakovleva M V, Ebner W B. Novel LiNi1-xTix/2Mgx/2O2 Compounds as Cathode Materials for Safer Lithium-ion Batteries [J]. Electrochem. Solid-State Lett., 1998, 1(3): 117-119.

[35]

Kosova N V, Devyatkina E T, Kaichev V V. Optimization of Ni2+/Ni3+ Ratio in Layered Li(Ni,Mn,Co)O2 Cathodes for Better Electrochemistry [J]. J. Power Sources, 2007, 174(2): 965-969.

[36]

Paulsen J M, Thomas C L, Dahn J R. Batteries I. Electrochemical Properties [J]. J. Electrochem. Soc., 2000, 147 (3): 861–868

[37]

Lai X Y, Halpert J E, Wang D. Recent Advances in Micro-/Nanostructure Hollow Spheres for Energy Applications: from Simple to Complex Systems [J]. Energy Environ. Sci., 2012, 5(2): 5604-5618.

[38]

Gu F, Chen G. Carbon Coating with Oleic Acid on Li4Ti5O12 [J]. Int. J. Electrochem. Sci., 2012, 7(7): 6168-6179.

[39]

Giwa C O. Discharge Behaviour of Copper (II) Halide Cathodes with Molten Nitrate Electrolytes[J]. J. Appl. Electrochem., 1998, 28(5): 531-537.

[40]

Guidotti R A, Reinhardt F W. Evaluation of the Li (Al)-MnO2 Couple in LiNO3-KNO3 Eutectic Electrolyte for Borehole Applications[C]. Philadelphia, 2004 USA: Department of Commerce National Technical Information Service.

[41]

Guidotti R A, Reinhardt F W. Performance of Li-Alloy Ag2CrO4 Couples in Molten LiNO3-KNO3 Eutectic Electrolyte[C], 2001 Savannah: USA: IEEE.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/