Catalytic activity of iridium dioxide with different morphologies for oxygen reduction reaction

Guangjin Wang , Fei Huang , Tian Xu , Yi Yu , Feng Cheng , Yue Zhang , Mu Pan

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (5) : 882 -887.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (5) : 882 -887. DOI: 10.1007/s11595-015-1244-0
Article

Catalytic activity of iridium dioxide with different morphologies for oxygen reduction reaction

Author information +
History +
PDF

Abstract

Iridium dioxide with different morphologies (nanorod and nanogranular) is successfully prepared by a modified sol-gel and Adams methods. The catalytic activity of both samples for oxygen reduction reaction is investigated in an alkaline solution. The electrochemical results show that the catalytic activity of the nanogranular IrO2 sample is superior to that of the nanorod sample due to its higher onset potential for oxygen reduction reaction and higher electrode current density in low potential region. The results of Koutecky-Levich analysis indicate that the oxygen reduction reaction catalyzed by both samples is a mixture transfer pathway. It is dominated by four electron transfer pathway for both samples in high overpotential area, while it is controlled by two electron transfer process for both samples in low overpotential area.

Keywords

Iridium dioxide / modified sol-gel method / Adams method / oxygen reduction reaction

Cite this article

Download citation ▾
Guangjin Wang, Fei Huang, Tian Xu, Yi Yu, Feng Cheng, Yue Zhang, Mu Pan. Catalytic activity of iridium dioxide with different morphologies for oxygen reduction reaction. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(5): 882-887 DOI:10.1007/s11595-015-1244-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ping Z, Pan M, Yuan R Z. The Catalysis of NAD+ on Methanol Anode Oxidation Electrode for Direct Methanol Fuel Cell [J]. J. Wuhan Univ. Technol., 2004, 19(4): 23-25.

[2]

Tang H L, Pan M, Mu S C, et al. Synthesis of Platinum Nanoparticles Modified with Nafion and the Application in PEM Fuel Cell [J]. J. Wuhan Univ. Technol., 2004, 19(3): 7-9.

[3]

Chen Z, Higgins D, Yu A, et al. A Review on Non-precious Metal Electrocatalysts for PEM Fuel Cells [J]. Energy Environ. Sci., 2011, 4(9): 3167-3192.

[4]

Brouzgou A, Song S Q, Tsiakaras P. Low and Non-platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects [J]. Appl. Catal., B, 2012, 127: 371-388.

[5]

Chang C C, Wen T C, Yang C H, et al. Influence of Calcination Temperature of IrO2/Ti Electrodes on Oxygen Reduction[J]. Mater. Chem. Phys., 2009, 115(1): 93-97.

[6]

Chang C H, Yuen T S, Nagao Y, et al. Electrocatalytic Activity of Iridium Oxide Nanoparticles Coated on Carbon for Oxygen Reduction as Cathode Catalyst in Polymer Electrolyte Fuel Cell [J]. J. Power Sources, 2010, 195(18): 5938-5941.

[7]

Chang C H, Yuen T S, Nagao Y, et al. Catalytic Activity of Carbonsupported Iridium Oxide for Oxygen Reduction Reaction as a Pt-free Catalyst in Polymer Electrolyte Fuel Cell [J]. Solid State Ionics, 2011, 197(1): 49-51.

[8]

Takasu Y, Oohori K, Yoshinaga N, et al. An Examination of the Oxygen Reduction Reaction on RuO2-based Oxide Coatings Formed on Titanium Substrates [J]. Cataly. Today, 2009, 146(1-2): 248-252.

[9]

Takasu Y, Yoshinaga N, Sugimoto W. Oxygen Reduction Behavior of RuO2/Ti, IrO2/Ti and IrM (M: Ru, ">Mo,^W, V) Ox/Ti Binary Oxide Electrodes in a Sulfuric Acid Solution [J]. Electrochem. Commun., 2008, 10(4): 668-672.

[10]

Yoshinaga N, Sugimoto W, Takasu Y. Oxygen Reduction Behavior of Rutile-type Iridium Oxide in Sulfuric Acid Solution [J]. Electrochim. Acta, 2008, 54(2): 566-573.

[11]

Wang G J, Cheng F, Yu Y, et al. SC-IrO2NR-carbon Hybrid: a Catalyst with High Electrochemical Stability for Oxygen Reduction [J]. Science China-Chemistry, 2013, 56(1): 131-136.

[12]

Kong F D, Zhang S, Yin G P, et al. Pt/porous-IrO2 Nanocomposite as Promising Electrocatalyst for Unitized Regenerative Fuel Cell [J]. Electrochem. Commun., 2012, 14(1): 63-66.

[13]

Zhang Y, Zhang H, Ma Y, et al. A Novel Bifunctional Electrocatalyst for Unitized Regenerative Fuel Cell [J]. J. Power Sources, 2010, 195(1): 142-145.

[14]

Lin Y H, Sun Y C, Jian W B, et al. Electrical Transport Studies of Individual IrO2 Nanorods and Their Nanorod Contacts [J]. Nanotechnology, 2008, 19(4): 1-8.

[15]

Chen R, Chang H, Huang Y, et al. Growth and Characterization of Vertically Aligned Self-assembled IrO2 Nanotubes on Oxide Substrates [J]. J. Cryst. Growth, 2004, 271(1): 105-112.

[16]

Chen R, Huang Y, Liang Y, et al. Growth and Characterization of Iridium Dioxide Nanorods [J]. J. Alloys Compd, 2004, 383(1): 273-276.

[17]

Chen R S, Huang Y S, Liang Y M, et al. Field Emission From Vertically Aligned Conductive IrO2 Nanorods [J]. Appl. Phys. Lett., 2004, 84(9): 1552-1554.

[18]

Chen R S, Huang Y S, Liang Y M, et al. Growth Control and Characterization of Vertically Aligned IrO2 Nanorods [J]. J. Mater. Chem., 2003, 13(10): 2525-2529.

[19]

Chen R S, Huang Y S, Tsai D S, et al. Growth of Well Aligned IrO2 Nanotubes on LiTaO3 (012) Substrate [J]. Chem. Mater., 2004, 16(12): 2457-2462.

[20]

Lin Y, Sun Y, Jian W, et al. Electrical Transport Studies of Individual IrO2 Nanorods and Their Nanorod Contacts [J]. Nanotechnology, 2008, 19(4): 045 711

[21]

Wang G, Tsai D S, Huang Y S, et al. Selective Growth of IrO2 Nanorods Using Metalorganic Chemical Vapor Deposition [J]. J. Mater. Chem., 2006, 16(8): 780-786.

[22]

Sunarso J, Torriero A, A J, Zhou W, et al. Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study [J]. J. Phys. Chem. C, 2012, 116(9): 5827-5834.

[23]

Kim H W, Shim S H, Myung J H, et al. Annealing Effects on the Structural Properties of IrO2 Thin Films [J]. Vacuum, 2008, 82(12): 1400-1403.

[24]

Chang C C, Wen T C. Kinetics of Oxygen Reduction at IrO2-Coated Titanium Electrode in Alkaline Solution [J]. J. Electrochem. Soc., 1996, 143(5): 1485-1491.

[25]

Li H, Liu H, Jong Z, et al. Nitrogen-doped Carbon Nanotubes with High Activity for Oxygen Reduction in Alkaline Media [J]. Int. J. Hydrogen Energy, 2011, 36(3): 2258-2265.

[26]

Jijil C P, Unni S M, Sreekumar K, et al. Disordered Brownmillerite Ba2InCeO5+d with Enhanced Oxygen Reduction Activity [J]. Chem. Mater., 2012, 24(14): 2823-2828.

[27]

Jia F, Yu C, Ai Z, et al. Fabrication of Nanoporous Gold Film Electrodes with Ultrahigh Surface Area and Electrochemical Activity [J]. Chem. Mater., 2007, 19(15): 3648-3653.

[28]

Wang H, Liang Y, Li Y, et al. Co1-xS-Graphene Hybrid: A High- Performance Metal Chalcogenide Electrocatalyst for Oxygen Reduction [J]. Angew. Chem. Int. Ed., 2011, 50(46): 10969-10972.

[29]

Li S, Zhang L, Liu H, et al. Heat-treated Cobalt-tripyridyl Triazine (Co-TPTZ) Electrocatalysts for Oxygen Reduction Reaction in Acidic Medium [J]. Electrochim. Acta, 2010, 55(15): 4403-4411.

[30]

Girishkumar G, Vinodgopal K, Kamat P V. Carbon Nanostructures in Portable Fuel Cells: Single-Walled Carbon Nanotube Electrodes for Methanol Oxidation and Oxygen Reduction [J]. J. Phys. Chem. B, 2004, 108(52): 19960-19966.

[31]

Treimer S, Tang A, Johnson D C. A Consideration of the Application of Koutecký-Levich Plots in the Diagnoses of Charge-Transfer Mechanisms at Rotated Disk Electrodes [J]. Electroanalysis, 2002, 14(3): 165-171.

[32]

Zinola C, Castro L A, Triaca W, et al. Kinetics and Mechanism of the Electrochemical Reduction of Molecular Oxygen on Platinum in KOH: Influence of Preferred Crystallographic Orientation [J]. J. Appl. Electrochem., 1994, 24(6): 531-541.

[33]

Hossain M S, Tryk D, Yeager E. The Electrochemistry of Graphite and Modified Graphite Surfaces: the Reduction of O2 [J]. Electrochim. Acta, 1989, 34(12): 1733-1737.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/