Magnetic property of a spin-5/2 trigonal prismatic as a model for a molecule-based compound Cs4Na7[Fe6(OH)3(A-α-GeW9O34(OH)3)2]・30H2O

Zongbao Li , Kailun Yao

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (4) : 868 -872.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (4) : 868 -872. DOI: 10.1007/s11595-015-1242-2
Organic Materials

Magnetic property of a spin-5/2 trigonal prismatic as a model for a molecule-based compound Cs4Na7[Fe6(OH)3(A-α-GeW9O34(OH)3)2]・30H2O

Author information +
History +
PDF

Abstract

The magnetic susceptibility, high field magnetization, and specific heat of spin-5/2 trigonal prismatic “Fe6” model were investigated in terms of the Heisenberg model by algebraic method. The experimental results showed that the adequate magnetization description of the Heisenberg model were provided. The magnetization curve has four clear plateaus while the susceptibility exhibits typical antiferromagnetic feature. Two board peaks of the specific heat are observed at around 3 K and 15 K, while only a small sharp-peak at low field. Meanwhile, the magnetic susceptibility displays a sharp peak structure at low temperature, which is well consistent with experimental results.

Keywords

magnetic field / heisenberg model / magnetic properties / thermodynamic propertie

Cite this article

Download citation ▾
Zongbao Li, Kailun Yao. Magnetic property of a spin-5/2 trigonal prismatic as a model for a molecule-based compound Cs4Na7[Fe6(OH)3(A-α-GeW9O34(OH)3)2]・30H2O. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(4): 868-872 DOI:10.1007/s11595-015-1242-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hase M, Kohno M, Kitazawa H, et al. 1/3 Magnetization Plateau Observed in the Spin-1/2 Trimer Chain Compound Cu3(P2O6OH)2[J].. Phys. Rev. B, 2006, 73: 104-419.

[2]

Schröder C, Schmidt HJ, Schnack J, et al. Metamagnetic Phase Transition of the Antiferromagnetic Heisenberg Icosahedron[J].. Phys. Rev. L, 2005, 94: 203-207.

[3]

Negre N, Consejo C, Goiran M, et al. Spin Transitions in a Series of FeII Molecular Complexes Induced by a Strong-pulsed Magnetic Field[J].. Phys. B, 2001, 295: 91-95.

[4]

Bousseksou A, Boukheddaden K, Goiran M, et al. Dynamic Response of the Spin-crossover Solid Co(H2(fsa)2en)(py)2 to a Pulsed Magnetic Field[J].. Phys. Rev. B, 2002, 65: 172-412.

[5]

Bousseksou A, Goiran N, Salmon L, et al. Dynamic Triggering of A Spin-Transition by a Pulsed Magnetic Field [J].. Eur. Phys. J. B, 2000, 13: 451.

[6]

Bi LB, Kortz U, Nellutal S, et al. Structure, Electrochemistry, and Magnetism of the Iron(III)-Substituted Keggin Dimer, [Fe6(OH)3(A-a- GeW9O34(OH)3)2]11-[J].. Inorg. Chem., 2005, 44: 896-902.

[7]

Shaginyan VR, Msezane AZ, Popov KG, et al. Thermodynamic Properties of the Kagome Lattice in Herbertsmithite [J].. Phys. Rev. B, 2011, 84: 060-401.

[8]

Lopes AML, Oliveira GNP, Mendonca TM, et al. Local Distortions in Multiferroic AgCrO2 Triangular Spin Lattice [J].. Phys. Rev. B, 2011, 84: 014 434.

[9]

Tsirlin AA, Nath R, Abakumov AM, et al. Phase Separation and Frustrated Square Lattice Magnetism of Na1.5VOPO4F0.5[J]. Phys. Rev. B, 2011, 84: 014 429.

[10]

Uchida Y, Tamura R, Ikuma N, et al. Magnetic-Field-Induced Molecular Alignment in an Achiral Liquid Crystal Spin-Labeled by a Nitroxyl Group in the Mesogen Core[J].. J. Mater. Chem., 2009, 19: 415-418.

[11]

Pöppl A, Kevan L, et al. Investigation of Single, Sharp Line Signals in Modulated Microwave Absorption Spectra at Low Magnetic Fields in YBa2Cu3O7-d Single Crystal [J].. J. Chem. Soc., 1993, 89: 2 063-2 066.

[12]

Lukzen NN, Usov OM, Molin Y, et al. Magnetic Field Effects in the Recombination Fluorescence of a Three-Spin Radical Ion/ Biradical Ion System [J]. Phys. Chem. Chem. Phys., 2002, 4: 5 249-5 258.

[13]

Waldmann O, Zhao L, Thompson LK, et al. Field-Dependent Anisotropy Change in a Supramolecular Mn(II)-[3×3] Grid[J].. Phys. Rev. L, 2002, 88: 066-401.

[14]

Kouzoudis D, et al. Exact Analytical Partition Function and Energy Levels for a Heisenberg Ring Of N=6 Spin 1/2 Sites [J].. J. Magn. Magn. Mater., 1998, 189: 366-376.

[15]

Kazei ZA, Ovsyannikov GA, Constantinian KY, et al. Superconducting Current in Hybrid Structures with an Antiferromagnetic Interlayer [J]. J. Exp. Theor. Phys., 2010, 110: 336-344.

[16]

Kimura S, Narumi Y, Kindo K, et al. Field-Induced Spin-Crossover Transition of [MnIII(taa)] Studied under Pulsed Magnetic Fields [J].. Phys. Rev. B, 2005, 72: 064 448.

[17]

Chaboussant G, Sieber A, Ochsenbein S, et al. Exchange Interactions and High-Energy Spin States in Mn12-acetate[J].. Phys. Rev. B, 2004, 70: 104 422.

[18]

Julien MH, Jang ZH, Lascialfari A, et al. Proton NMR for Measuring Quantum Level Crossing in the Magnetic Molecular Ring Fe10[J].. Phys. Rev. L, 1999, 83: 227.

[19]

Li ZB, Yao KL, Liu ZL, et al. Thermodynamic Properties of a Spin-1 Tetrahedron as a Model for a Molecule-Based Compound [Mo12O30(mu2-OH10H2Ni(H2O)34]14H2O[J].. J. Magn. Magn. Mater., 2008, 320: 1759-1764.

[20]

Li ZB, Zhu Y, Wang X, et al. Thermodynamic Properties of the Fully Unconstrained Noncollinear Magnetisms [J].. J. Magn. Magn. Mater., 2010, 322: 305-310.

[21]

Fu HH, Yao KL, Liu ZL, et al. Thermodynamic Properties of a Spin- 1/2 Diamond Chain as a Model for a Molecule-Based Ferrimagnet and the Compound Cu3(CO3)2(OH)2[J].. Phys. Rev. B, 2006, 73: 104-454.

[22]

Ding LJ, Yao KL, Fu HH, et al. Spin-Peierls Transition in Low- Dimensional Quantum Spin Systems: A Green’S Function Approach [J].. Phys. Chem. Chem. Phys., 2009, 11: 1 406-1 415.

[23]

Ding LJ, Yao KL, Fu HH, et al. Spin-lattice Coupling Driven Ferroelectric Transition in One-Dimensional Organic Quantum Magnets [J].. J. Mater. Chem., 2011, 21: 449-455.

[24]

Ding LJ, Yao KL, Fu HH, et al. Coupling Driven Ferroelectric Transition in One-Dimensional Organic Quantum Magnets [J].. Phys. Chem. Chem. Phys., 2011, 13: 328-336.

[25]

Zhu L, Yao KL, Liu ZL, et al. Magnetic And Electronic Switching Properties of Photochromic Diarylethene with Two Nitronyl Nitroxides [J].. Appl. Phys. Lett., 2010, 97: 202 101.

[26]

Luban M, Borsa F, Sergey B, et al. Heisenberg Spin Triangles in {V6}- Type Magnetic Molecules:Experiment and Theory [J].. Phys. Rev. B, 2002, 66: 054 407.

[27]

Negre N, Goiran M, Bousseksou A, et al. High Magnetic Field Induced Spin Transition, HMFIST Effect, in Fe0.52Ni0.48(btr)2(NCS)2]H2O[J]. Synth. Metals, 2000, 115: 289-292.

[28]

Rousonchatzakis I, Ajiro Y, Mitamura H, et al. Hysteresis Loops and Adiabatic Landau-Zener-Stückelberg Transitions in the Magnetic Molecule {V6}[J].. Phys. Rev. L, 2005, 94: 147-204.

[29]

Affronte M, Cornia A, Lascialfari A, et al. Observation of Magnetic Level Repulsion in Fe6:Li Molecular Antiferromagnetic Rings[J].. Phys. Rev. L, 2002, 88: 167-201.

[30]

Haldane FDM. Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State[J]. Phys. Lett., 1983, 50: 1 153-1 159.

[31]

Koga A, Kawakami N. Quantum Phase Transitions for the Haldane System in Higher Dimensions: A Mixed-Spin Cluster Expansion Approach [J]. Phys. Rev. B, 2000, 61: 6-133.

[32]

Axenovich M, Luban M. Exact Ground State Properties of the Classical Heisenberg Model for Giant Magnetic Molecules [J]. Phys. Rev. B, 2001, 63: 100-407.

[33]

Fawcett E. Spin-density-wave Antiferromagnetism in Chromium[J]. Rev. Mod. Phys., 1988, 60: 209-242.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/