Preparation and magnetic properties of Cu-Ni core-shell nanowires in ion-track templates

Yonghui Chen , Jinglai Duan , Huijun Yao , Dan Mo , Tieshan Wang , Youmei Sun , Jie Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (4) : 665 -669.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (4) : 665 -669. DOI: 10.1007/s11595-015-1208-4
Advanced Materials

Preparation and magnetic properties of Cu-Ni core-shell nanowires in ion-track templates

Author information +
History +
PDF

Abstract

Cu-Ni core-shell nanowires, with an inner Cu core diameter of about 60 nm and varying Ni shell thicknesses (10, 30, 50, 60, and 80 nm), were successfully fabricated in porous polycarbonate (PC) iontrack templates by a two-step etching and electrodeposition method. In our experiment, the thickness of Ni shell can be effectively tuned through the etching time of templates. The core-shell structure was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern elucidates the co-existence of characteristic peaks for both Cu and Ni, indicating no other phases were formed during preparation. Magnetic hysteresis loops measured via vibrating sample magnetometry (VSM) revealed that Cu-Ni core-shell nanowires with thinner Ni shell exhibited obviously diamagnetic character and together with a weak ferromagnetic activity, whereas ferromagnetic behavior was primarily measured for the wires with thicker Ni shell. With increasing Ni shell thickness, the squareness and coercivity value became smaller due to the shape anisotropy and the formation of multi-domain structure.

Keywords

core-shell nanowires / ion track template / etching / electrodeposition / magnetic property

Cite this article

Download citation ▾
Yonghui Chen, Jinglai Duan, Huijun Yao, Dan Mo, Tieshan Wang, Youmei Sun, Jie Liu. Preparation and magnetic properties of Cu-Ni core-shell nanowires in ion-track templates. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(4): 665-669 DOI:10.1007/s11595-015-1208-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu J, Duan JL, Toimil-Molares E, et al. Electrochemical Fabrication of Single-crystalline and Polycrystalline Au Nanowires: The Influence of Deposition Parameters[J].. Nanotechnology, 2006, 17: 1922-1926.

[2]

Kwon Y, Kim H, Lee S, et al. Enhanced Ethanol Sensing Properties of TiO2 Nanotube Sensors[J].. Sens. Actuators B, 2012, 173: 441-446.

[3]

Gu C, Li S, Huang J, et al. Preferential Growth of Long ZnO Nanowires and Its Application in Gas Sensor[J].. Sens. Actuators B, 2013, 177: 453-459.

[4]

Yao HJ, Mo D, Duan JL, et al. Investigation of The Surface Properties of Gold Nanowire Arrays[J].. Appl. Surf. Sci., 2011, 258: 147-150.

[5]

Seabra AB, Duran N. Biological Applications of Peptides Nanotubes: An overview[J].. Peptides, 2013, 39: 47-54.

[6]

Du C, Chen M, Wang W, et al. Platinum-based Intermetallic Nanotubes with a Core-shell Structure as Highly Active and Durable Catalysts for Fuel Cell Applications[J].. Power Sources, 2013, 240: 630-635.

[7]

Son SJ, Reichel J, He B, et al. Magnetic Nanotubes for Magnetic-fieldassisted Bioseparation, Biointeraction, and Drug Delivery[J].. JACS, 2005, 127: 7316-7317.

[8]

Paramasivam I, Nah YC, Das C, et al. WO3/TiO2 Nanotubes with Strongly Enhanced Photocatalytic Activity[J].. Chem. Eur. J., 2010, 16: 8993-8997.

[9]

Chu HJ, Zhou CZ, Wang J, et al. An Analytical Model for the Critical Shell Thickness in Core/shell Nanowires based on Crystallographic Slip[J].. Mech. Phys. Solids, 2013, 61: 2147-2160.

[10]

Fabbri F, Rossi F, Attolini G, et al. Luminescence Properties of SiC/ SiO2 Core-shell Nanowires with Different Radial Structure[J].. Mat. Lett., 2012, 71: 137-140.

[11]

Zanolli Z, Froberg LE, Bjork MT, et al. Fabrication, Optical Characterization and Modeling of Strained Core-shell Nanowires[J].. Thin Solid Films, 2006, 515: 793-796.

[12]

Jang WS, Kim SY, Lee J, et al. Triangular GaN-BN Core-shell Nanocables: Synthesis and Field Emission[J].. Chem. Phys. Lett., 2006, 422: 41-45.

[13]

Koi N, Oku T, Nishijima M. Fe Nanowire Encapsulated in Boron Nitride Nanotubes[J].. Solid State Commun., 2005, 136: 342-345.

[14]

Chen YC, Tu CH, Lai YF, et al. Growth and Optical Properties of aand c-axis Oriented Zn-ZnO Nanocables Fabricated via a Facile Onestep Process[J].. Alloys Compd., 2013, 554: 115-121.

[15]

Zahoor A, Teng Q, Wang H, et al. Synthesis and Characterization of Ag@polycarbazole Coaxial Nanocables and Their Enhanced Dispersion Behavior[J].. Met. Mater. Int., 2011, 17: 417-423.

[16]

Filippo E, Manno D, Bartolomeo ARD, et al. Single Step Synthesis of SnO2-SiO2 Core-shell Microcables[J].. Cryst. Growth, 2011, 330: 22-29.

[17]

Toimil-Molares ME. Characterization and Properties of Micro- and Nanowires of Controlled Size, Composition, and Geometry Fabricated by Electrodeposition and Ion-track Technology[J].. Beilstein [J]. Nanotechnol., 2012, 3: 860-883.

[18]

Mo D, Liu J, Yao HJ, et al. Preparation and Characterization of CdS Nanotubes and Nanowires by Electrochemical Synthesis in Ion-track Templates[J].. Cryst. Growth, 2008, 310: 612-616.

[19]

Chen YF, Liu J, Yao HJ, et al. Electrochemical Polymerization and Characterization of Polypyrrole Nanowires and Nanotubules[J].. Physica B, 2010, 405: 2461-2465.

[20]

Duan JL, Liu J, Mo D, et al. Controlled Crystallinity and Crystallographic Orientation of Cu Nanowires Fabricated in Ion-track Templates[J].. Nanotechnology, 2010, 21: 365605.

[21]

Evans PR, Hendren WR, Atkinson R, et al. Nickel-coated Gold-core Nanorods Produced by Template Assisted Electrodeposition[J].. Electrochem. Soc., 2007, 154: K79-K82.

[22]

Ferain E, Legras R. Track-etch Templates Designed for Micro-and Nanofabrication[J].. Nucl. Instrum. Methods Phys. Res. Sect. B, 2003, 208: 115-122.

[23]

Duan JL, Liu J, Yao HJ, et al. Controlled Synthesis and Diameterdependent Optical Properties of Cu Nanowire Arrays[J].. Mater. Sci. Eng. B, 2008, 147: 57-62.

[24]

Wang XW, Yuan ZH, Sun SQ, et al. Electrochemically Synthesis and Magnetic Properties of Ni Nanotube Arrays with Small Diameter[J].. Mater. Chem. Phys., 2008, 112: 329-332.

[25]

Han NM, Guo GH, Zhang GF, et al. Domain Wall Structure Transition During Magnetization Reversal Process in Magnetic Nanowires[J].. Trans. of Nonferrous Met. Soc. China, 2007, 17: 1034-1037.

[26]

Wang YW, Wang GZ, Wang SX, et al. Fabrication and Magnetic Properties of Highly Ordered Co16Ag84 Alloy Nanowire Array[J].. Appl. Phys. A, 2002, 74: 577-580.

[27]

Wang JB, Zhou XZ, Liu QF, et al. Magnetic Texture in Iron Nanowire Arrays[J].. Nanotechnology, 2004, 15: 485-489.

[28]

Ren Y. Preparation and Study on Tunable Magnetic Anisotropy of Magnetic Nanowire Arrays, 2010 Lanzhou: Lanzhou University.

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/