Synthesis and performance of LiFe xMn1−xPO4/C as cathode material for lithium ion batteries

Xuewu Liu , Xusong Qin , Xiaojuan Wang , Xin Li , Shen Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (4) : 655 -659.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (4) : 655 -659. DOI: 10.1007/s11595-015-1206-6
Advanced Materials

Synthesis and performance of LiFe xMn1−xPO4/C as cathode material for lithium ion batteries

Author information +
History +
PDF

Abstract

LiFe xMn1−xPO4/C composites were synthesized by a solid-state reaction route using phenolic resin as both reducing agent and carbon source. The effect of Fe doping on the crystallinity and electrochemical performance of LiFe xMn1−xPO4/C was investigated. The experimental results show that the Fe2+ substitution for Mn2+ will lead to crystal lattice shrinkage of LiFe xMn1−xPO4/C particles due to the smaller ionic radii of Fe2+. In the investigated Fe doping range (x = 0 to 0.7), LiFe xMn1−xPO4/C (x = 0.4) composites exhibited a maximum discharge capacity of 148.8 mAh/g at 0.1 C while LiFe xMn1−xPO4/C (x = 0.7) composite showed the best cycle capability with a capacity retention ratio of 99.0% after 30 cycles at 0.2 C. On the contrary, the LiFe xMn1−xPO4/C (x = 0.5) composite performed better trade-off on discharge capacity and capacity retention ratio, 127.2 mAh/g and 94.7% after the first 30 cycles at 0.2 C, respectively, which is more preferred for practical applications.

Keywords

LiMnPO4 / Fe doping / solid-state reaction route / phenolic resin

Cite this article

Download citation ▾
Xuewu Liu, Xusong Qin, Xiaojuan Wang, Xin Li, Shen Chen. Synthesis and performance of LiFe xMn1−xPO4/C as cathode material for lithium ion batteries. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(4): 655-659 DOI:10.1007/s11595-015-1206-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as Positive-electrode Materials for Rechargeable Lithium Batteries[J].. J. Electrochem Soc., 1997, 144(4): 1188-1194.

[2]

Delacourt C, Laffont L, Bouchet R, et al. Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M=Fe, Mn) Electrode Materials[J].. J. Electrochem. Soc., 2005, 152(5): A913-A921.

[3]

Yonemura M, Yamada A, Takei Y, et al. Comparative Kinetic Study of Olivine LixMPO4 (M=Fe, Mn)[J].. J. Electrochem. Soc., 2004, 151(9): A1352-A1356.

[4]

Molenda J, Ojczyk W, Swierczek K, et al. Diffusional Mechanism of Deintercalation in LiFe1-yMnyPO4 Cathode Material[J].. Solid State Ionics, 2006, 177(26-32): 2617-2.

[5]

Burba CA, Frech R. Local Structure in the Li-ion Battery Cathode Material Lix(MnyFe1-y)PO4 for 0<x≤1 and y=0.0, 0.5 and 1.0[J].. J. Power Sources, 2007, 172(2): 870-876.

[6]

Drezen T, Kwon NH, Bowen P, et al. Effect of Particle Size on LiMnPO4 Cathodes[J].. J. Power Sources, 2007, 174(2): 949-953.

[7]

Kim J, Park KY, Park I, et al. The Effect of Particle Size on Phase Stability of the Delithiated LixMnPO4[J].. J. Electrochem Soc., 2012, 159(1): A55-A59.

[8]

Bramnik NN, Ehrenberg H. Precursor-based Synthesis and Electrochemical Performance of LiMnPO4[J].. J. Alloys and Compounds, 2008, 464(1-2): 259-264.

[9]

Kumar PR, Venkateswarlu M, Misra M, et al. Carbon Coated LiMnPO4 Nanorods for Lithium Batteries[J].. J. Electrochem. Soc., 2011, 158(3): A227-A230.

[10]

Zhang B, Wang X, Li H, et al. Electrochemical Performances of LiFe1-xMnxPO4 with High Mn Content[J].. J. Power Sources, 2011, 196(16): 6992-6996.

[11]

Hong J, Wang F, Wang X, et al. LiFexMn1-xPO4: A Cathode for Lithiumion Batteries[J].. J. Power sources, 2011, 196(7): 3659-3663.

[12]

Mi CH, Zhang XG, Zhao XB, et al. Synthesis and Performance of LiMn0.6Fe0.4PO4/nano-carbon Webs Composite Cathode[J].. Materials Science and Engineering B, 2006, 129(1-3): 8-13.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/