The fabrication of bio-ceramsite for the removal of heavy metals and its toxicity to bacteria

Yan Shi , Ken Sun , Xuebin Qi , Qing Gao

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 649 -654.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 649 -654. DOI: 10.1007/s11595-015-1205-7
Biomaterials

The fabrication of bio-ceramsite for the removal of heavy metals and its toxicity to bacteria

Author information +
History +
PDF

Abstract

Bio-ceramsite technology is one of the most effective technologies in the pretreatment of drinking water. In this work, bio-ceramsite was fabricated by Citrobacter freundii (C. freundii) immobilization on the ceramsite. The findings of the current study suggest that the bio-ceramites showed biosorption abilities for Cd(II) and Pb(II) and the removal efficiency for Pb(II) is lower than Cd(II). The adsorption mechanism can be attributed to electrostatic attraction and covalent bond. The morphology of the cells changed after the adsorption of Cd(II) and Pb(II) due to the dissociation of the assembly of peptidoglycan and lipopolysaccharide. The fluorescence polarization has shown a significant decrease in membrane fluidity and an increase of permeability of cell membrane. The spectral profile of C. freundii suggests the alteration of carbonyl, amide and phosphonic groups on the cell membrane.

Keywords

immobilization / biosorption / bio-ceramsite / dissociation / cell membrane

Cite this article

Download citation ▾
Yan Shi, Ken Sun, Xuebin Qi, Qing Gao. The fabrication of bio-ceramsite for the removal of heavy metals and its toxicity to bacteria. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(3): 649-654 DOI:10.1007/s11595-015-1205-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mulligan C N, Yong R N, Gibbs B F. Remediation Technologies for Metal-contaminated Soils and Groundwater: an Evaluation [J]. Engineering Geology, 2001, 60(1–4): 193-207.

[2]

Chen Y D, Zhang W G, Ma H L. A Magnetic Record of Heavy Metal Pollution in the Yangtze River Subaqueous Delta[J]. Science of the Total Environment, 2014, 476–477: 368-377.

[3]

Stanislav V, Tomas R K. Biosorption of Cd2+ and Zn2+ by Cell Surface-engineered Saccharomyces Cerevisiae[J]. International Biodeterioration & Biodegradation, 2006, 60(2): 96-102.

[4]

Veronica L C, Liliana B V, Carlos M A. Indigenous Microorganisms as Potential Bioremediators for Environments Contaminated with Heavy Metals [J]. International Biodeterioration & Biodegradation, 2012, 69: 28-37.

[5]

Hussein H, Farag S, Moawad H. Isolation and Characterization of Pseudomonas Resistant to Heavy Metals Contaminants[J]. Arab J. Biotechnol, 2004, 7(1): 13-22.

[6]

Hussein H, Farag S, Kandeel K. Biosorption of Heavy Metals from Waste Water Using Pseudomonas Sp [J]. Electron. J. Biotechnol., 2004, 7(1): 38-46.

[7]

Meunier N, Laroulandie J, Blais J F. Cocoa Shells for Heavy Metal Removal from Acidic Solutions[J]. Bioresour. Technol, 2003, 90(3): 255-263.

[8]

Volesky B, Holan Z R. Biosorption of Heavy Metals[J]. Biotechnol. Prog., 1995, 11(3): 235-250.

[9]

Li H D, Liu T, Li Z. Low-cost Supports Used to Immobilize Fungi and Reliable Technique for Removal Hexavalent Chromium in Wastewater[J]. Bioresour. Technol., 2008, 99(7): 2 234-2 241.

[10]

Cheng J, Jia L Y, Zhang B. Comparison of Quartz sand, Anthracite, Shale and Biological Ceramsite for Adsorptive Removal of Phosphorus from Aqueous Solution[J]. Journal of Environmental Sciences, 2014, 26(2): 466-477.

[11]

Ahlberg G, Gustafsson O, Wedel P. Leaching of Metals from Sewage Sludge During One Year and Their Relationship to Particle Size [J]. Environ. Pollut., 2006, 144(2): 545-553.

[12]

Fuliana A, Conesa J A, Font R. Formation and Destruction of Chlorinated Pollutants During Sewage Sludge Incineration[J]. Environ. Sci. Technol., 2004, 38(10): 2 953-2 958.

[13]

David A A, Juliet S S, Jennifer E S. The Effect of High Ionic Strength on Neptunium (V) Adsorption to a Halophilic Bacterium[J]. Geochimica et Cosmochimica Acta., 2013, 110(1): 45-57.

[14]

Liu J Y, Duan C, Zhou J Z. Adsorption of Bacteria onto Layered Double Hydroxide Particles to Form Biogranule-like Aggregates[J]. Applied Clay Science, 2013, 75–76: 39-45.

[15]

Chen L S, Colemen W G. Cloning and Characterization of the Escherichia coli K-12 rfa-2 (rfaC) Gene, a Gene Required for Lipopolysaccharide Inner Core Synthesis[J]. Journal of Bacteriology, 1993, 175(9): 2 534-2 540.

[16]

Sharma P K, Rao K H. Analysis of Different Approaches for Evaluation of Surface Energy of Microbial Cells by Contact Angle Goniometry[J]. Adv. Colloid Interf. Sci., 2002, 98(35): 341-463.

[17]

Trevors J T. Fluorescent Probes for Bacterial Cytoplasmic Membrane Research[J]. J. Biochem. Biophys. Methods, 2003, 57(2): 87-103.

[18]

Denich T J, Beaudette L A, Cassidy M B. Membrane Fluidity of the Pentachlorophenol-mineralizing Sphingomonas Sp [J]. J. Eluor., 2003, 13(5): 385-391.

[19]

Naumann D, Shultz C, Sabisch A. New Insights into the Phase Behaviour of a Complex Anionic Amphiphile: architecture and Dynamics of Bacterial Deep Rough Lipopolysaccharide Membranes as Seen by FTIR, X-ray, and Molecular Modelling Techniques [J]. J. Mol. Struct., 1989, 214: 213-246.

[20]

Kacurakova M, Mathlouthi M. FTIR and Laser-Raman Spectra of Oligosaccharides in Water: Characterization of the Glycosidic Bond [J]. Carbohydr. Res., 1996, 284(2): 145-157.

[21]

Kinder R, Ziegler C, Wessels J M. Gamma-irradiation and UV-C Lightinduced Lipid Peroxidation: a Fourier Transform-infrared Absorption Spectroscopic Study [J]. Int. J. Radiat. Biol., 1997, 71(5): 561-571.

[22]

Naumann D. FT-Infrared and FT-Raman Spectroscopy in Biomedical Research[J]. Appl. Spectrosc. Rev., 2001, 36(2–3): 239-298.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/