Elastic and plastic behaviors of laminated Ti-TiBw/Ti composites

Baoxi Liu , Lujun Huang , Lin Geng

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 596 -600.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 596 -600. DOI: 10.1007/s11595-015-1195-5
Metallic Materials

Elastic and plastic behaviors of laminated Ti-TiBw/Ti composites

Author information +
History +
PDF

Abstract

The novel laminated Ti-TiBw/Ti composites composed of pure Ti layers and TiBw/Ti composite layers have been successfully fabricated by reactive hot pressing. Herein, two-scale structures formed: the pure Ti layer and TiBw/Ti composite layer together constructed a laminated structure at a macro scale. Furthermore, TiBw reinforcement was distributed around Ti particles and then formed a network microstructure in TiBw/Ti composite layer at a micro scale. The laminated Ti-TiBw/Ti composites reveal a superior combination of high strength and high elongation due to two-scale structures compared with the pure Ti, and a further enhancement in ductility compared with the network structured composites. Moreover, the elastic modulus of the laminated composites can be predicted by H-S upper bound, which is consistent with the experimental values.

Keywords

titanium matrix composites / laminated microstructure / two-scale structure / elastic modulus / tensile properties / H-S bounds

Cite this article

Download citation ▾
Baoxi Liu, Lujun Huang, Lin Geng. Elastic and plastic behaviors of laminated Ti-TiBw/Ti composites. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(3): 596-600 DOI:10.1007/s11595-015-1195-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li XB, Zu GY, Wang P. Interface Strengthening of Laminated Composite Produced by Asymmetrical Roll Bonding[J]. Mater. Sci. Eng. A, 2013, 562: 96-100.

[2]

Jiang L, Li Z Q, Fan G L, et al. A Flake Powder Metallurgy Approach to Al2O3/Al Biomimetic Nanolaminated Composites with Enhanced Ductility[J]. Scripta Mater., 2011, 65: 412-415.

[3]

Bermejo R, Pascual J, Lube T. Optimal Strength and Toughness of Al2O3-ZrO2 Laminates Designed with External or Internal Compressive Layers[J]. J. Eur. Ceram. Soc., 2008, 28: 1 575-1 583.

[4]

Rawers J, Perry K. Crack Initiation in Laminated Metal-intermetallic Composites[J]. J. Mater. Sci., 1996, 31: 3 501-3 506.

[5]

Tomaszewski H. Residual Stresses in Layered Ceramic Composites[J]. J. Eur. Ceram. Soc., 1999, 19: 1 329-1 331.

[6]

Cepeda-Jimenez C M, Carreno F, Ruano O A, et al. Influence of Interfacial Defects on the Impact Toughness of Solid State Diffusion Bonded Ti-6Al-4V alloy Based Multilayer Composites[J]. Mat. Sci. Eng. A, 2013, 563: 28-35.

[7]

Nambu S, Michiuchi M, Inoue J, et al. Effect of Interfacial Bond-ing Strength on Tensile Ductility of Multilayered Steel Composites[J]. Compos. Sci. Technol., 2009, 69(11–12): 1 936-1 941.

[8]

Guo Y J, Qian G J, Jian W Z, et al. Microsturucture and Tensile Behavior of Cu-Al Multi-layered Composites Prepared by Plasma Activated Sintering[J]. Mat. Sci. Eng. A, 2010, 527(20): 5 234-5 240.

[9]

Inoue J Y, Nambu S C, Ishimoto Y S, et al. Fracture Elongation of Brittle/ductile Multilayered Steel Composites with A Strong Interface[J]. Scripta Mater., 2008, 59: 1 055-1 058.

[10]

Liu B X, Huang L J, Geng L, et al. Microstructure and Tensile Behavior of Novel Laminated Ti-TiBw/Ti Composites by Reaction Hot Pressing[J]. Mat. Sci. Eng. A, 2013, 583: 182-187.

[11]

Kidane A, Shukla A. Quasi-static and Dynamic Fracture Initiation Toughness of Ti/TiB Layered Functionally Graded Material under Thermo-mechanical Loading[J]. Eng. Fract. Mech., 2010, 77: 479-491.

[12]

Sahay S S, Ravichandran K S, Atri R. Evolution of Microstructure and Phases in In-situ Processed Ti-TiB Composites Containing High Volume Fractions of TiB Whiskers[J]. J. Mater. Res., 1999, 14: 4 214-4 223.

[13]

Huang L J, Geng L, Li B A, et al. In situ TiBw/Ti6Al4V Composites with Novel Reinforcement Architecture Fabricated by Reaction Hot Pressing[J]. Scripta Mater., 2009, 60: 996-999.

[14]

Huang L J, Geng L, Wang B, et al. Effects of Extrusion and Heat Treatment on the Microstructure and Tensile Properties of In situ TiBw/Ti6Al4V Composite with A Network Architecture[J]. Composites Part A, 2012, 43: 486-491.

[15]

Huang L J, Xu H Y, Wang B, et al. Effects of Heat Treatment Parameters on the Microstructure and Mechanical Properties of In situ TiBw/Ti6Al4V Composite with A Network Architecture[J]. Mater. Des., 2012, 36: 694-698.

[16]

Peng H X. A Review of “Consolidation Effects on Tensile Properties of An Elemental Al Matrix Composite”[J]. Mat. Sci. Eng. A, 2005, 396: 1-2.

[17]

Feng H B, Zhou Y, Jia D C, et al. Microstructure and Mechanical Proper-ties of In situ TiB Reinforced Titanium Matrix Composites Based on Ti-FeMo-B Prepared by Spark Plasma Sintering[J]. Compos. Sci. Technol., 2004, 64: 2 495-2 500.

[18]

Panda K B, Ravichandran K S. Titanium-titanium Boride (Ti-TiB) Functionally Graded Materials Through Reaction Sintering: Synthesis, Microstructure, and Properties[J]. Metall. Mater. Trans. A, 2003, 34: 1 993-2 003.

[19]

Atri R R, Ravichandran K S, Jha S K. Elastic Properties of In-situ Processed Ti-TiB Composites Measured by Impulse Excitation of Vibration[J]. Mat. Sci. Eng. A, 1999, 271: 150-159.

[20]

Fan Z, Miodownik A P. The Young’s Moduli of In-situ Ti/TiB Composites Obtained by Rapid Solidification Processing[J]. J. Mater. Sci., 1994, 29: 1 127-1 134.

[21]

Hashin Z, Shtrikman S, Variational A. A Approach to the Theory of the Elastic Behaviour of Multiphase Materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11: 127-140.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/