Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels

Yong Wan , Weiqing Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 574 -579.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 574 -579. DOI: 10.1007/s11595-015-1191-9
Metallic Materials

Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels

Author information +
History +
PDF

Abstract

The effects of boron content in the range of 0–0.0082 wt%, on the inclusion type, microstructure, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the addition of excess boron(w(Bt)〉0.004 1 wt%) led to the formation of Fe2B particles. As boron content increased, grain size increased and reached a maximum in steel with 0.004 1 wt% boron. Furthermore, steel containing 0.004 1 wt% boron had the strongest {100} fiber texture, Goss texture and the weakest {111} fiber texture among the five tested steels. Flux density firstly rapidly increased and then suddenly decreased with increasing boron content and reached a maximum in steel with 0.004 1 wt% boron. Conversely, core loss first sharply decreased and then abruptly increased with the increase of boron content and reached a minimum in steel containing 0.004 1 wt% boron. Steel containing 0.004 1 wt% boron obtained the best magnetic properties, predominantly through the development of optimum grain size and favorable texture.

Keywords

boron / non-oriented electrical steel / grain size / texture / magnetic property

Cite this article

Download citation ▾
Yong Wan, Weiqing Chen. Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(3): 574-579 DOI:10.1007/s11595-015-1191-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Littmann M F. Iron and Silicon-iron Alloys[J]. IEEE Trans. Mag., 1971, 7(1): 48-60.

[2]

Hou C K, Hu C T, Lee S. The Effect of Aluminum on the Magnetic Properties of Lamination Steels[J]. IEEE Trans. Mag., 1991, 27(5): 4 305-4 309.

[3]

Hou C K. The Effects of Grain Size on the Magnetic Properties of Fully Processed, Continuous-annealed Low-carbon Electrical Steels[J]. IEEE Trans. Mag., 1996, 32(2): 471-477.

[4]

Stephenson E T, Marder A R. The Effects of Grain Size on the Core Loss and Permeability of Motor Lamination Steel[J]. IEEE Trans. Mag., 1986, 22(2): 101-106.

[5]

Beckley P, Thompson J E. Influence of Inclusions on Domain-wall Motion and Power Loss in Oriented Electrical Steel[J]. Proc. IEE., 1970, 117(11): 2 194-2 200.

[6]

Shiozaki M, Kurosaki Y. The Effects of Grain Size on the Magnetic Properties of Non-oriented Electrical Steel Sheets[J]. J. Mater. Eng., 1989, 11(1): 37-43.

[7]

Lyudkovksy G, Rastogi P K. Effects of Boron and Zirconium on Microstructure and Magnetic Properties of Batch Annealed Al-killed Low Carbon Steels[J]. IEEE Trans. Mag., 1985, 21(5): 1 912-1 914.

[8]

Rowe R G. Grain Boundary Segregation and Grain Growth Inhibition in Silicon Iron: The Effect of Boron and Nitrogen[J]. Metall. Mater. Trans. A., 1979, 10A(8): 997-1 011.

[9]

Kim K N, Pan L M L J P, et al. The Effect of Boron Content on the Processing for Fe-6.5 wt% Si Electrical Steel Sheets[J]. J. Magn. Magn. Mater., 2004, 227(3): 331-336.

[10]

Xia Z S. Research and Production of Boron Bearing Cold Rolled Nonoriented Silicon Steel[J]. Shanghai Metals, 2003, 25(4): 20-23.

[11]

Fiedler H C. The Solubility Product of Boron Nitride in 3.1 Percent Silicon-iron[J]. Metall. Mater. Trans. A, 1978, 9(10): 1 489-1 490.

[12]

Erasmus L A. Effect of Aluminum Additions on Forgeability, Austenite Grain Coarsening Temperature, and Impact Properties of Steel[J]. ISIJ Int., 1964, 202(1): 32-41.

[13]

Yoshimasa F, Toru I, Yoshihiro H. Effect of Al Content on r-value of Boron-bearing Al-killed Steel Sheet[J]. Tetsu-to-Hagané, 2002, 88(6): 69-74.

[14]

Senuma T. Present Status of and Future Prospects for Precipitation Research in the Steel Industry[J]. ISIJ Int., 2002, 42(1): 1-12.

[15]

Ueno M, Inone T. Distribution of Boron at Austenite Grain Boundaries and Bainitic Transformation in Low Carbon Steels[J]. Transformations ISIJ, 1973, 13: 210-215.

[16]

Llewellyn D T. Nitrogen in Steels[J]. Ironmaking Steelmaking, 1993, 20(5): 338-343.

[17]

Wang M X, He L X. Effect of Boron on Structure and Properties of Low Carbon Bainitic Steels[J]. ISIJ Int., 2002, 42(Supplement): 38-44.

[18]

Wiliams T M, Stoneham A M, Harries D R. Segregation of Boron to Grain Boundaries in Solution Treated Type 316 Austenitic Stainless Steel[J]. Metal Sci., 1976, 10(1): 14-19.

[19]

Fountain R W, Chipman J. Solubility and Precipitation of B in Two Boron Alloys[J]. TMS-AIME, 1962, 224: 599-605.

[20]

Grenoble H E. The Role of Solutes in the Secondary Recrystallization of Silicon Iron[J]. IEEE Trans. Mag., 1977, 13(5): 1 427-1 432.

[21]

Mao W M, Zhan X M. The Quantitative Analysis of Texture in Crystal Material[M], 1993 Beijing: Metallurgical Industry Press.

[22]

Shimanaka H, Ito Y, Irie T. Energy Efficient Electrical Steels[M], ed. by A R Marder and E T Stephenson. PA: TMS-AIME, 1981

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/