Preparation and microstructure of porous ZrB2 ceramics using reactive spark plasma sintering method

Huiping Yuan , Junguo Li , Qiang Shen , Lianmeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 512 -515.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 512 -515. DOI: 10.1007/s11595-015-1181-y
Advanced Materials

Preparation and microstructure of porous ZrB2 ceramics using reactive spark plasma sintering method

Author information +
History +
PDF

Abstract

Zirconium oxide (ZrO2) and boron carbide (B4C) were added to ZrB2 raw powders to prepare ZrB2 porous ceramics by reactive spark plasma sintering (RSPS). The reactions between ZrO2 and B4C which produce ZrB2 and gas (such as CO and B2O3) result in pore formation. X-Ray Diffraction results indicated that the products phase was ZrB2 and the reaction was completed after the RSPS process. The porosity could be controlled by changing the ratio of synthesized ZrB2 to raw ZrB2 powders. The porosity of porous ceramics with 20 wt% and 40 wt% synthsized ZrB2 are 0.185 and 0.222, respectivly. And dense ZrB2-SiC ceramic with a porosity of 0.057 was prepared under the same conditions for comparison. The pores were homogeneously distributed within the microstructure of the porous ceramics. The results indicate a promising method for preparing porous ZrB2-based ceramics.

Keywords

zirconium diboride / porous ceramic / reactive spark plasma sintering

Cite this article

Download citation ▾
Huiping Yuan, Junguo Li, Qiang Shen, Lianmeng Zhang. Preparation and microstructure of porous ZrB2 ceramics using reactive spark plasma sintering method. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(3): 512-515 DOI:10.1007/s11595-015-1181-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo S. Densification of ZrB2-based Composites and Their Mechanical and Physical Properties: A Review[J]. J. Euro. Ceram. Soc., 2009, 29(6): 995-1 011.

[2]

Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory Diborides of Zirconium and Hafnium[J]. J. Am. Ceram. Soc., 2007, 90(5): 1 347-1 364.

[3]

Upadhya K, Yang J, Hoffmann W. Materials for Ultrahigh Temperature Structural Applications[J]. Am. Ceram. Soc. Bull., 1997, 76(12): 51-56.

[4]

Chen D, Zhao Y, Li G, et al. Mechanism and Kinetic Model of In-Situ TiB2/7055Al Nanocomposites Synthesized under High Intensity Ultrasonic Field[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(5): 920-925.

[5]

Justin J F, Jankowiak A. Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability[J]. Onera J. Aerospace Lab., 2011, 3: 1-11.

[6]

Li J, Yu Z, Wang H, et al. Microstructure and Mechanical Properties of an In Situ Synthesized TiB and TiC Reinforced Titanium Matrix Composite Coating [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27(1): 1-8.

[7]

Zhang J, Tang W, Fu Z, et al. Fabrication of homogenous dispersion TiB2-Al2O3 Composites [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(4): 681-683.

[8]

Zhang X, Wang Z, Sun X, et al. Effect of Graphite Flake on the Mechanical Properties of Hot Pressed ZrB2-SiC Ceramics[J]. Mater. Lett., 2008, 62(28): 4 360-4 362.

[9]

Mroz C. Zirconium Diboride[J]. Am. Ceram. Soc. Bull., 1994, 73(6): 141-142.

[10]

Loehman R, Corral E, Dumm H P, et al. Ultra High Temperature Ceramics for Hypersonic Vehicle Applications[R], 2006 Sandia report: SAND 2006-2925, Albuquerque, NM.

[11]

Opeka M M, Talmy I G, Zaykoski J A. Oxidation-Based Materials Selection for 2 000 °C Hypersonic Aerosurfaces Theoretical Considerations and Historical Experience[J]. J. Mater. Sci., 2004, 39: 5 887-5 904.

[12]

Wang Z, Hong C, Zhang X, et al. Microstructure and Thermal Shock Behavior of ZrB2-SiC-Graphite Composite[J]. Mater. Chem. Phys., 2009, 113(1): 338-341.

[13]

Wuchina E, Opila E, Opeka M, et al. UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications[C]. Electrochem. Soc.-Interface, 2007

[14]

Zimmermann J W, Hilmas G E, Fahrenholtz W G, et al. Thermophysical Properties of ZrB2 and ZrB2-SiC Ceramics[J]. J. Am. Ceram. Soc., 2008, 91(5): 1 405-1 411.

[15]

Chen Y, Vandeperre L J, Stearn R J. The Effect of Porosity in Thermal Shock[J]. J. Mater. Sci., 2008, 43: 4 099-4 106.

[16]

Zhang H, Yan Y, Huang Z, et al. Pressureless Sintering of ZrB2-SiC Ceramics:The Effect of B4C Content[J]. Scr. Mater., 2009, 60(7): 559-562.

[17]

Fahrenholtz W G, Hilmas G E, Zhang S C, et al. Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects[J]. J. Am. Ceram. Soc., 2008, 91(5): 1 398-1 404.

[18]

Zhao H, He Y, Jin Z. Preparation of Zirconium Boride Powder[J]. J. Am. Ceram. Soc., 1995, 78(9): 2 534-2 536.

[19]

Yuan H, Li J, Shen Q, et al. In Situ Synthesis and Sintering of ZrB2 Porous Ceramics by the Spark Plasma Sintering-Reactive Synthesis (SPS-RS) Method[J]. Inter. J. Ref. Metal. Hard Mater., 2012, 34: 3-7.

[20]

Yuan H, Li J, Shen Q, et al. Preparation and Thermal Conductivity Characterization of ZrB2 Porous Ceramics Fabricated by Spark Plasma Sintering[J]. Inter. J. Ref. Metal. Hard Mater., 2013, 36: 225-231.

[21]

Yuan H, Li J, Shen Q, et al. Preparation and Microstructure of Laminated ZrB2-SiC Ceramics with Porous ZrB2 Interlayers[J]. J. Phys.: Conf. Ser., 2013, 419: 012001.

[22]

Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless Densification of Zirconium Diboride with Boron Carbide Additions[J]. J. Am. Ceram. Soc., 2006, 89(5): 1 544-1 550.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/