First-principles study of divalent IIA and transition IIB metals doping into Cu2O

Jiakun Zhu , Minghai Luo , Mingkai Li , Yunbin He

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 458 -462.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 458 -462. DOI: 10.1007/s11595-015-1171-0
Advanced Materials

First-principles study of divalent IIA and transition IIB metals doping into Cu2O

Author information +
History +
PDF

Abstract

Divalent IIA metals such as Be, Mg, Ca, Sr, Ba and transition IIB metals such as Zn, Cd were investigated as possible n-type dopants into the Cu2O theoretically by using the first-principles calculations based on density functional theory. By systematical analyses of the lattice parameters, the bond length, the electronic structure, the local density of states and the defect formation energy for various doping systems, it is revealed that Ca, Sr, Ba and Be are more suited for n-type doping into Cu2O as shallow donors, compared to Mg which introduces a relatively deep donor level in Cu2O. Meanwhile, Zn and Cd can hardly be doped into Cu2O due to the positive formation energy of relevant defects.

Keywords

Cu2O / n-type doping / divalent metals / electronic structure / defect formation

Cite this article

Download citation ▾
Jiakun Zhu, Minghai Luo, Mingkai Li, Yunbin He. First-principles study of divalent IIA and transition IIB metals doping into Cu2O. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(3): 458-462 DOI:10.1007/s11595-015-1171-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grondahl L O, Geiger P H. A New Electronic Rectifier[J]. Proc. AIEE Winter Convention, 1927, 46: 357-366.

[2]

Kennard E H, Dieterich E O. An Effect of Light upon the Contact Potential of Selenium and Cuprous Oxide[J]. Phys. Rev., 1917, 9: 58-63.

[3]

Izaki M, Shinagawa T, Mizuno K T, et al. Electrochemically Constructed p-Cu2O/n-ZnO Heterojunction Diode for Photovoltaic Device[J]. J. Phys. D: Appl. Phys., 2007, 40: 3 326-3 329.

[4]

Cui J, Gibson U J. A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells[J]. J. Phys. Chem. C, 2010, 114: 6 408-6 412.

[5]

Meyer B K, Polity A, Reppin D, et al. Binary Copper Oxide Semiconductors: From Materials Towards Devices[J]. Phys. Status Solidi B, 2012, 249: 1 487-1 509.

[6]

Chu H P, Lei L, Hu X, et al. Metallo-Organic Chemical Vapor Deposition^(MOCVD) for the Development of Heterogeneous Catalysts[J]. Energy Fuels, 1998, 12: 1 108-1 103.

[7]

Okumara M, Nakamura S, Tsubota S, et al. Chemical Vapor Deposition of Gold on Al2O3, SiO2 and TiO2 for the Oxidation of CO and of H2[J]. Catal. Lett., 1998, 51: 53-58.

[8]

Gou L, Murphy C. Solution-Phase Synthesis of Cu2O Nanocubes[J]. Nano Lett., 2003, 3: 231-234.

[9]

Akimoto K, Ishizuka S, Yanagita M. Thin Film Deposition of Cu2O and Application for Solar Cells[J]. Solar Energy, 2006, 80: 715-722.

[10]

Yang W Y, Kim W G, Rhee S W. Radio Frequency Sputter Deposition of Single Phase Cuprous Oxide Using Cu2O as a Target Material and Its Resistive Switching Properties[J]. Thin Solid Films, 2008, 517: 967-971.

[11]

Olsen L C, Addis F W, Miller W. Experimental and Theoretical Studies of Cu2O Solar Cells[J]. Solar Cells, 1982, 7: 247-279.

[12]

Parreta A, Jayaraj M K, Nocera D A. Electrical and Optical Properties of Copper Oxide Films Prepared by Reactives RF Magnetron Sputtering[J]. Phys. Stat. Sol. (a), 1996, 155(2): 399-404.

[13]

Hulin D, Mysyrowicz A, Benoît à la Guillaume C. Evidence for Bose-Einstein Statistics in an Exciton Gas[J]. Phys. Rev. Lett., 1980, 45: 1 970-1 973.

[14]

Wolfe J P, Jang J I. New Perspectives on Kinetics of Excitons in Cu2O [J]. Solid State Comm., 2005, 134: 143-149.

[15]

Jang J I, Sun Y, Ketterson J B. Indirect Generation of Quadrupole Polaritons from Dark Excitons in Cu2O[J]. Phys. Rev. B, 2008, 77: 075 201.

[16]

Hanke L, Frölich D, Ivanov A L, et al. Spectroscopy of LA-Phonoritons in Cu2O[J]. Phys. Stat. Sol, 2000, 221: 287-293.

[17]

Werner A, Hocheimer H D. High-pressure X-ray study of Cu2O and Ag2O[J]. Phys. Rev. B, 1982, 25: 5 929-5 934.

[18]

Rakhshani A E. Preparation, Characteristics and Photovoltaic Properties of Cuprous Oxide-a review[J]. Solid State Electron, 1986, 29: 7-17.

[19]

Scanlon D O, Morgan B J, Watson G W, et al. Acceptor Levels in p-Type Cu2O: Rationalizing Theory and Experiment[J]. Phys. Rev. Lett., 2009, 103: 096405.

[20]

Garuthara R, Siripala W. Photoluminescence Characterization of Polycrystalline n-type Cu2O Films[J]. J. Lumin., 2006, 121: 173-178.

[21]

Wang L, Tao M. Fabrication and Characterization of p-n Homojunctions in Cuprous Oxide by Electrochemical Deposition[J]. Electrochem. Solid-State Lett., 2007, 10(9): H248-H250.

[22]

Scanlon D O, Watson G W. Undoped n-Type Cu2O: Fact or Fiction? [J]. J. Phys. Chem. Lett., 2010, 17: 2 582-2 585.

[23]

Giannozzi P, Baroni S, Bonini N, et al. Quantum Espresso: a Modular and Open-source Software Project for Quantum Simulations of Materials[J]. J. Phys.: Condens. Matter., 2009, 21: 395 502.

[24]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3 865-3 868.

[25]

Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41: 7 892-7 895.

[26]

Soon A, Todorova M, Delley B, et al. Thermodynamic Stability and Structure of Copper Oxide Surfaces: A First-principles Investigation[J]. Phys. Rev. B, 2007, 75: 125 420.

[27]

Li J B, Wei S H, Li S S. Design of Shallow Acceptors in ZnO: Firstprinciples Band-structure Calculations[J]. Phys. Rev. B, 2006, 74: 081 201.

[28]

Baumeister P W. Optical Absorption of Cuprous Oxide[J]. Phys. Rev., 1961, 121: 359-362.

[29]

Ghijsen J, Tjeng L H, Eskes H, et al. Resonant Photoemission Study of the Electronic Structure of CuO and Cu2O[J]. Phys. Rev. B, 1990, 42: 2 268-2 274.

[30]

Nikitine S, Grun J B, Sieskind M. Étude Spectrophotométrique de la Série Jaune de Cu2O aux Basses Températures[J]. J. Phys. Chem. Solids, 1961, 17: 292-300.

[31]

Islam M M, Diawara B, Maurice V, et al. Bulk and Surface Properties of Cu2O: A First-principles Investigation[J]. J. Mol. Struct: Theochem., 2009, 903: 41-48.

[32]

Anisimov V I, Aryasetiawan F, Lichtenstein A I. First-principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: the LDA+ U Method[J]. J. Phys. Condens, Matter., 1997, 9: 767-808.

[33]

Ruiz E, Alvarez S, Alemany P, et al. Electronic Structure and Properties of Cu2O[J]. Phys. Rev. B, 1997, 56: 7 189-7 196.

[34]

Erhart P, Albe K, Klein A. First-principles Study of Intrinsic Point Defects in ZnO: Role of Band Structure, Volume Relaxation, and Finite-size Effects[J]. Phys. Rev. B, 2006, 73: 205 203.

[35]

Zhang S B, Northrup J E. Chemical Potential Dependence of Defect Formation Energies in GaAs: Application to Ga Self-Diff’usion[J]. Phys. Rev. Lett., 1991, 67: 2 339-2 342.

[36]

Liu B, Qi Z, Shi C. First-principles Study of the Intrinsic Defects in PbFCl[J]. Phys. Rev. B, 2006, 74: 174 101.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/