Degradation of pollutant and antibacterial activity of waterborne polyurethane/doped TiO2 nanoparticle hybrid films

Shan Qiu , Fengxia Deng , Shanwen Xu , Peng Liu , Xinmin Min , Fang Ma

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 447 -451.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 447 -451. DOI: 10.1007/s11595-015-1169-7
Advanced Materials

Degradation of pollutant and antibacterial activity of waterborne polyurethane/doped TiO2 nanoparticle hybrid films

Author information +
History +
PDF

Abstract

The waterborne polyurethane/doped TiO2 nanoparticle hybrid films were prepared. Nd, I doped TiO2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped TiO2 with waterborne polyurethane, followed by heat treatment. The presence and nanometric distribution of doped TiO2 nanoparticles in prepared membranes is evident according to SEM images. The photocatalytic activities of doped TiO2 were significantly enhanced compared with pure TiO2 powders. After the hybrid film fabrication, the photocatalytic activities were almost the same as the pure catalysts with k MB of 0.046. In the antibacterial testing, the hybrid films can inhibit E. coli growth. A significant decrease in membrane fluidity and increase of permeability of E. coli were observed.

Keywords

doped TiO2 / polyurethane / hybrid film / photocatalytic activity / antibacterial

Cite this article

Download citation ▾
Shan Qiu, Fengxia Deng, Shanwen Xu, Peng Liu, Xinmin Min, Fang Ma. Degradation of pollutant and antibacterial activity of waterborne polyurethane/doped TiO2 nanoparticle hybrid films. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(3): 447-451 DOI:10.1007/s11595-015-1169-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Piewnuan C, Wootthikanokkhan J, Ngaotrakanwiwat P, et al. Preparation of TiO2/(TiO2-V2O5)/polypyrrole Nanocomposites and a Study on Catalytic Activities of the Hybrid Materials under UV/Visible Light and in the Dark[J]. Superlattices and Microstructures, 2014, 75: 105-117.

[2]

Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. J. Phys. Chem., 1994, 98(51): 13 669-13 679.

[3]

Wei H, Wu Y, Lun N. Preparation and Photocatalysis of TiO2 Nanoparticles Co-doped With Nitrogen and Lanthanum[J]. Mater. Sci., 2004, 39(4): 1 305-1 308.

[4]

Kim M C, Lee Y W, Kim S J, et al. Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure. Electrochimica Acta, 2014, 147: 241-249.

[5]

Chang J T, Lai Y F, He J L. Photocatalytic Performance of Chromium or Nitrogen Doped Arc Ion Plated-TiO2 Films Surf[J]. Coat. Technol., 2005, 200(5–6): 1 640-1 644.

[6]

Asahi R, Morikawa T, Ohwaki T. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides[J]. Science, 2001, 293: 269.

[7]

Djellabi R, Ghorab M F, Cerrato G, et al. Photoactive TiO2-montmorillonite Composite for Degradation of Organic Dyes in Water[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 295: 57-63.

[8]

Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration Dependence on Photocatalytic Activity of TiO2−xNx Powders[J]. J. Phys. Chem. B, 2003, 107(23): 5 483-5 486.

[9]

Shoabargh S, Karimi A, Dehghan G, et al. A Hybrid Photocatalytic and Enzymatic Process Using Glucose Oxidase Immobilized on TiO2/polyurethane for Removal of a Dye [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3 150-3 156.

[10]

Kim H J, Pant H R, Kim J H, et al. Fabrication of Multifunctional TiO2-fly Ash/polyurethane Nanocomposite Membrane via Electrospinning [J]. Ceramics International, 2014, 40(2): 3 023-3 029.

[11]

Jiang X F, Yang L, Liu P, et al. The Photocatalytic and Antibacterial Activities of Neodymium and Iodine Doped TiO2 Nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2010, 79: 69-74.

[12]

Swan T M, Watson K. Membrane Fatty Acid Composition and Membrane Fluidity as Parameters of Stress Tolerance in Yeast[J]. Canadian Journal of Microbiology, 1997, 43(1): 70-77.

[13]

Liu P, Wenli D, Li X. The Damage of Outer Membrane of Escherichia Coli in the Presence of TiO2 Combined With UV light[J]. Colloids and Surfaces B: Biointerfaces, 2010, 78: 171-176.

[14]

Conti J, Halladay H N, Petersheim M. An Ionotropic Phase Transition in Phosphatidylcholine: Cation and Anion Cooperativity[J]. Biochim. Biophys. Acta, 1987, 902: 53-64.

[15]

Kiwi J, Nadtochenko V. Evidence for the Mechanism of Photocatalytic Degradation of the Bacterial Wall Membrane at the TiO2 Interface by ATR-FTIR and Laser Kinetic Spectroscopy[J]. Langmuir, 2005, 21(10): 4 631-4 641.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/