Picosecond laser machining of deep holes in silicon infiltrated silicon carbide ceramics

Qing Zhang , Chunhui Wang , Yongsheng Liu , Litong Zhang , Guanghua Cheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 437 -441.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (3) : 437 -441. DOI: 10.1007/s11595-015-1167-9
Advanced Materials

Picosecond laser machining of deep holes in silicon infiltrated silicon carbide ceramics

Author information +
History +
PDF

Abstract

Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.

Keywords

picosecond laser / deep holes / silicon infiltrated silicon carbide ceramic

Cite this article

Download citation ▾
Qing Zhang, Chunhui Wang, Yongsheng Liu, Litong Zhang, Guanghua Cheng. Picosecond laser machining of deep holes in silicon infiltrated silicon carbide ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(3): 437-441 DOI:10.1007/s11595-015-1167-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Paris J Y, Vincent L, Denape J. High-speed Tribological Behavior of a Carbon/Silicon-carbide Composite [J]. Composites Science and Technology, 2001, 61(3): 417-423.

[2]

Krenkel W, Heidenreich B, Renz R. C/C-SiC Composites for Advanced Friction Systems[J]. Advanced Engineering Materials, 2002, 4(7): 427-436.

[3]

Schlier L, Zhang W, Travitzky N, et al. Macro-Cellular Silicon Carbide Reactors for Nonstationary Combustion Under Piston Engine-Like Conditions[J]. International Journal of Applied Ceramic Technology, 2011, 8(5): 1 237-1 245.

[4]

Cohrt H, Thümmler H F. Herstellung, Eigenschaften und Anwendung von Reaktionsgebundenem, Siliziuminfiltriertem Siliziumkarbid[J]. Materials Science and Engineering Technology, 1985, 16(8): 277-285.

[5]

Richter H, Willmann G, Heider W. Ermüdungsverhalten von SiSiC [J]. Materials Science and Engineering Technology, 1982, 13(10): 355-360.

[6]

Momma C, Chichkov B N, Nolte S, et al. Short-pulse Laser Ablation of Solid Targets[J]. Optics Communication, 1996, 129(1–2): 134-142.

[7]

Kautek W, Krüger J, Lenzner M, et al. Laser Ablation of Dielectrics With Pulse Durations between 20 fs and 3 ps[J]. Applied Physics Letters, 1996, 69(21): 3 146-3 148.

[8]

Chichkov B N, Momma C, Nolte S, et al. Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids[J]. Applied Physics A: Materials Science Processing, 1996, 63(2): 109-115.

[9]

Kononenko T V, Garnov S V, Klimentov S M, et al. Laser Ablation of Metals and Ceramics in Picosecond-nanosecond Pulsewidth in the Presence of Different Ambient Atmospheres[J]. Applied Surface Science, 1997, 109–110(1): 48-51.

[10]

Momma C, Nolte S, Chichkov B N, et al. Precise Laser Ablation with Ultrashort Pulses[J]. Applied Surface Science, 1997, 109–110(1): 15-19.

[11]

Cheng J, Perrie W, Sharp M, et al. Single-pulse Drilling Study on Au, Al and Ti Alloy by Using a Picosecond Laser[J]. Applied Physics A: Materials Science Processing, 2009, 95(3): 739-746.

[12]

Ancona A, Nodop D, Limpert J, et al. Microdrilling of Metals with an Inexpensive and Compact Ultra-short-pulse Fiber Amplified Microchip Laser[J]. Applied Physics A: Materials Science Processing, 2009, 94(1): 19-24.

[13]

Hu W Q, Shin Yung C, King Galen B. Micromachining of Metals, Alloys, and Ceramics by Picosecond Laser Ablation[J]. Journal of Manufacturing Science and Engineering, 2010, 132(1): 011 009

[14]

Beal V E, Paggi R A, Salmoria G V, et al. Statistical Evaluation of Laser Energy Density Effect on Mechanical Properties of Polyamide Parts Manufactured by Selective Laser Sintering[J]. Journal of Applied Polymer Science, 2009, 113(5): 2 910-2 919.

[15]

Bonse J, Wrobel J M, Kruger J, et al. Ultrashort-pulse Laser Ablation of Indium Phosphide in Air[J]. Applied Physics A, 2001, 72(1): 89-94.

[16]

Bandyopadhyay S, Sundar J K S, Sundararajan G, et al. Geometrical Features and Metallurgical Characteristics of Nd:YAG Laser Drilled Holes in Thick IN718 and Ti-6Al-4V Sheets[J]. Journal of Materials Processing Technology, 2002, 127(1): 83-95.

[17]

Emmony D C, Howson R P, Willis L J. Laser Mirror Damage in Germanium at 10.6 μm[J]. Applied Physics Letters, 1973, 23: 598-600.

[18]

Ozkan A M, Malshe A, Railkar T A, et al. Femtosecond Laser-induced Periodic Structure Writing on Diamond Crystals and Microclusters[J]. Applied Physics Letters, 1999, 75(23): 3 716-3 718.

[19]

Zhou G S, Fauchet P M, Siegman A E. Growth of Spontaneous Periodic Surface Structures on Solids During Laser Illumination[J]. Physical Review B, 1982, 26(10): 5 366-5 382.

[20]

Pedraza A J, Guan Y F, Fowlkes J D, et al. Nanostructures Produced by Ultraviolet Laser Irradiation of Silicon I Rippled Structures[J]. Journal of Vacuum Science and Technology B, 2004, 22(6): 2 823-2 835.

[21]

Ehrlich D J, Brueck S R J, Tsao J Y. Time-resolved Measurements of Stimulated Surface Polariton Wave Scattering and Grating Formation in Pulsed-laser-annealed Germanium[J]. Applied Physics Letters, 1982, 41(1): 630-632.

[22]

Wang J C, Guo C L. Ultrafast Dynamics of Femtosecond Laser-induced Periodic Surface Pattern Formation on Metals[J]. Applied Physics Letters, 2005, 87(25): 251 914-251 916.

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/