Phase morphology evolution in AISI301 austenite stainless steel under different cooling rates

Liang Bai , Yonglin Ma , Shuqing Xing , Chenxin Liu , Jieyu Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (2) : 392 -396.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (2) : 392 -396. DOI: 10.1007/s11595-015-1158-x
Metallic Materials

Phase morphology evolution in AISI301 austenite stainless steel under different cooling rates

Author information +
History +
PDF

Abstract

Quenching experiments were performed at different cooling rates under non-directional solidification by differential thermal analysis, and the morphologic variation of primary phase, phase transition temperature and hardness change at the same quenching temperature were investigated. The experimental results show that, with the gradual decrease of the cooling rate from 25 K/min, the morphology of ferrite starts to transform experiencing the dendrite, radial pattern, Widmanstatten-like and wire-net. Sample starts to present the Widmanstatten-like microstructure at 10 K/min which does not exist at higher or lower cooling rates, and this microstructure is detrimental to the mechanical property. Except 10 K/min, the hardness decreases with decreasing cooling rate.

Keywords

cooling rate / non-directional solidification / morphology evolution / primary phase

Cite this article

Download citation ▾
Liang Bai, Yonglin Ma, Shuqing Xing, Chenxin Liu, Jieyu Zhang. Phase morphology evolution in AISI301 austenite stainless steel under different cooling rates. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(2): 392-396 DOI:10.1007/s11595-015-1158-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Umeda T, Okane T, Kurz W. Phase Selection During Solidification of Peritectic Alloys[J]. Acta Mater., 1996, 44: 4 209-4 216.

[2]

Arai Y, Emi T, Fredriksson H, et al. In-situ Observed Dynamics of Peritectic Solidification and δ /γ Transformation of fe-3 to5 at. Pct in Alloys[J]. Metall Trans. A, 2005, 36: 3 065-3 074.

[3]

Kim MC, Oh MH, Lee JH, et al. Composition and Growth Rate Effects in Directionally Solidified Tial Alloys[J]. Sci. Eng. A, 1997, 240: 570-576.

[4]

Busse P, Meissen F. Coupled Growth of the Properitectic α-and the Peritectic γ-Phases in Binary Titanium Aluminides[J]. Scr Mater., 1997, 36: 653-658.

[5]

Vandyoussefi M, Kerr HW, Kurz W. Two-Phase Growth in Peritectic Fe-Ni Alloys[J]. Acta Mater., 2000, 48(9): 2 297-2 306.

[6]

Lee JH, Verhoeven JD. Characteristics of Crystal Growth from Solution: Scaling Laws[J]. Cryst. Growth., 1994, 144(3–4): 353-366.

[7]

Lapin J, Klimova A, Velisek R, et al. Directional Solidification of Ni-Al-Cr-Fe Alloy[J]. Scripta Mater., 1997, 37(1): 85-91.

[8]

Lo W, Cardwell DA, Dewhurst CD, et al. Fabrication of Large Grain YBCO by Seeded Peritectic Solidification[J]. Mater. Res., 1996, 11(4): 786-794.

[9]

Fidler J, Schrefl T. Overview of Nd-Fe-B Magnets and Coercivity (invited)[J]. Journal of Applied Physics, 1996, 79(8): 5 029-5 034.

[10]

Hunter A, Ferry M. Phase Formation during Solidification of AISI 304 Austenitic Stainless Steel[J]. Scripta Mater., 2002, 46: 253-258.

[11]

Umeda T, Okane T, Kurz W. Phase Selection during Solidification of Peritectic Alloys[J]. Acta Mater., 1996, 44: 4 209-4 216.

[12]

Fukumoto S, Okane T, Umeda T, et al. Crystallographic Relationships between Ferrite and Austenite during Unidirectional Solidification of Fe-Cr-Ni Alloys[J]. ISIJ Int., 2000, 40(7): 677-684.

[13]

Nassar H, Fredriksson H. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science[J]. Metall. Mater. Trans. A, 2010, 41A: 2 776-2 783.

[14]

Dhindaw BK, Antonsson T, Tinoco J, et al. Characterization of the Peritectic Reaction in Medium-Alloy Steel through Microsegregation and Heat-of-Transformation Studies[J]. Metall Mater Trans. A, 2004, 35A: 2 869-2 879.

[15]

Rajasekhar K, Harendranath CS, Raman R, et al. Microstructural Evolution during Solidification of Austenitic Stainless Steel Weld Metals: A Color Metallographic and Electron Microprobe Analysis Study[J]. Materials Characterization, 1997, 38(2): 53-65.

[16]

Liang GF, Zhou WC, Nolli P, et al. In Situ Observation of Nucleation and Growth of High-Temperatureδphase in Stainless Steel AISI 304 during Heating[J]. Acta Metal Sin., 2006, 42(8): 805-809.

[17]

Fukumoto S, Kurz W. Prediction of the δ to γ Transition in Austenitic Stainless Steels during Laser Treatment[J]. ISIJ Int., 1997, 37(7): 677-684.

[18]

Brooks JA, Thompson AW. Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds[J]. Int. Mater. Rev., 1991, 36(1): 16-44.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/