Hydrothermal synthesis and visible-light photocatalytic activities of SnS2 nanoflakes

Tiekun Jia , Zhiyu Min , Jianliang Cao , Guang Sun , Xiaodong Wang , Zhanying Zhang , Tingting Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (2) : 276 -281.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (2) : 276 -281. DOI: 10.1007/s11595-015-1139-0
Advanced Materials

Hydrothermal synthesis and visible-light photocatalytic activities of SnS2 nanoflakes

Author information +
History +
PDF

Abstract

SnS2 nanoflakes were successfully synthesized via a simple hydrothermal process. The as-prepared SnS2 samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherms, and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the as-prepared SnS2 nanoflakes under visible light irradiation (λ>420 nm) were evaluated by the degradation of rhodamine B (RhB). The effect of hydrothermal temperatures on the photocatalytic efficiency of as-prepared SnS2 nanoflakes was investigated. The experimental result showed that SnS2 nanoflakes synthesized at the temprature of 160° had higher photocatalytic efficiency and good photocatalytic stability.

Keywords

SnS2 / nanoflakes / hydrothermal synthesis / photocatalytic activities / stability

Cite this article

Download citation ▾
Tiekun Jia, Zhiyu Min, Jianliang Cao, Guang Sun, Xiaodong Wang, Zhanying Zhang, Tingting Li. Hydrothermal synthesis and visible-light photocatalytic activities of SnS2 nanoflakes. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(2): 276-281 DOI:10.1007/s11595-015-1139-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zou ZG, Ye JH, Sayama K, Arakawa H Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst[J]. Nature, 2001, 414(6): 625-627.

[2]

Hernandez-Alonso MD, Fresno F, Suarez S, Cornnado JM Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities[J]. Energy Environ. Sci., 2009, 2(12): 1 231-1 257.

[3]

Nah YC, Paramasivam I, Schmuki P Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications[J]. Chemphyschem., 2010, 11(13): 2 698-2 713.

[4]

Surmacki J, wronski B, Nicze M, . Raman Spectroscopy of Visible Light Nitrogen Doped Titanium Dioxide Generated by Irradiation with Electron Beam[J]. Chem. Phys. Lett., 2013, 566: 54-59.

[5]

Chen H, Nambu A, Graciani J, . Reaction of NH3 with Titania: N Doping of the Oxide and TiN Formation[J]. J. Phys. Chem. C, 2007, 111: 1 366-1 372.

[6]

Tada H, Fujishima M, Kobayashi H Photodeposition of Metal Sulfide Quantum Dots on Titanium (IV) Dioxide and the Applications to Solar Energy Conversion[J]. Chem. Soc.Rev., 2010, 40(7): 4 232-4 243.

[7]

Nomura T, Kousaka Y, Alonso M, . Precipitation of Zinc Sulfide Particless from Homogeneous Solutions[J]. J. Colloid. Interface Sci., 2000, 223(2): 179-184.

[8]

Li W, Li D, Meng W, . Novel Approach to Enhance Photosensitized Degradation of Rhodamine B under Visible Light Irradiation by the ZnxCd1−xS/TiO2 Nanocomposites[J]. Environ. Sci. Technol., 2011, 45(7): 2 987-2 993.

[9]

Xie Y, Ali G, Yoo S H, . Sonication-Assisted Synthesis of CdS Quantum-dot-sensitized TiO2 Nanotube Arrays with Enhanced Photoelectro-chemical and Photocatalytic Activity[J]. ACS Appl. Mater. Interfaces, 2010, 2(10): 2 910-2 914.

[10]

Guo Y, Wang L, Yang L, . Optical and Photocatalytic Properties of Arginine-stabilized Cadmium Sulfide Quantum Dots[J]. Mater. Lett., 2011, 65(3): 486-489.

[11]

Wang C, Ao Y, Wang P, . Controlled Synthesis in Large-scale of CdS Mesospheres and Photocatalytic Activity[J]. Mater. Lett., 2010, 64(3): 439-441.

[12]

Di X, Kansal S K, Deng W Preparation. Characterization and Photocatalytic Activity of Flowerlike Cadmium Sulfide Nanostructure[J]. Sep. Purif. Technol., 2009, 68(1): 61-64.

[13]

Zhang YC, Du ZN, Li SY, . Novel Synthesis and High Visible Light Photocatalytic Activity of SnS2 Nanoflakes from SnCl2·2H2O and S Powders[J]. Appl. Catal. B: Environ., 2011, 102(1–2): 147-156.

[14]

Wang K, Huang Y, Huang HJ, . Hydrothermal Synthesis of Flowerlike Zn2SnO4 Composites and Their Performance as Anode Materials for lithium-ion batteries [J]. Ceram. Int., 2014, 40(6): 8 021-8 025.

[15]

Ramkumar J, Ananthakumar Babu Moorthy S Hydrothermal Synthesis and Characterization of CuInSe2 Nanoparticles Using Ethylenediamine as Capping Agent[J]. Solar Energy, 2014, 106: 177-183.

[16]

Jia TK, Wang XF, Wang WM, . Facile Synthesis of SnO2 Hollow Microspheres and Their Optical Property[J]. J. Wuhan Univ. Technol.-Mater.Sci. Edition, 2011, 26(2): 302-305.

[17]

Jia TK, Wang WM, Long F, . Synthesis, Characterization, and Photocatalytic Activity of Zn-doped SnO2 Hierarchical Architectures Assembled by Nanocones[J]. J. Phys. Chem. C, 2009, 113(21): 9 701-9 077.

[18]

Jia TK, Wang WM, Long F, . Fabrication, Characterization and Photocatalytic Activity of La-doped ZnO Nanowires[J]. Journal of Alloys and Compounds, 2009, 484(1–2): 410-415.

[19]

Ai ZH, Lee SC, Huang Y, . Photocatalytic Removal of NO and HCHO over Nanocrystalline Zn2SnO4 Microcubes for Indoor Air Purification[J]. J. Hazard. Mater., 2010, 179(1–3): 141-150.

[20]

Ohko Y, Nakamura Y, Fukuda A, . Photocatalytic Oxidation of Nitrogen Dioxide with TiO2 Thin Films under Continuous UV-light Illumination[J]. J. Phys. Chem. C, 2008, 112(28): 10 502-10 508.

[21]

Wang X, Li S, Yu H, . In Situ Anion-exchange Synthesis and Photocatalytic Activity of Ag8W4O16/AgCl-nanoparticle Core-shell Nanorods [J]. J. Mol. Catal. A Chem., 2011, 334(1–2): 52-59.

[22]

Butler MA Hotoelectrolysis and Physical Properties of the Semiconducting Electrode WO3[J]. J. Appl. Phys., 1977, 48(5): 1 914-1 920.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/