Fabrication of tungsten carbide nanoparticles from refluxing derived precursor

Jiqiu Wen , Yongdi Li , Xiaopeng Meng , Guangfu Yin , Yadong Yao

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (2) : 231 -234.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (2) : 231 -234. DOI: 10.1007/s11595-015-1130-9
Advanced Materials

Fabrication of tungsten carbide nanoparticles from refluxing derived precursor

Author information +
History +
PDF

Abstract

Tungsten carbide (WC) nanoparticles were fabricated from a novel refluxing-derived precursor. The precursor was prepared by acid hydrolysis of Na2WO4 with concentrated HCl in water followed by refluxing with ethanol and n-Dedocane, respectively. Then it was heat-treated to 1 200 °C for 2 h in vacuum to obtain WC nanoparticles. X-ray studies reveal the formation of hexagonal tungsten carbide and the grain size of 24.3 nm. SEM image shows WC nanoparticles with particle size of 20–60 nm. Long time refluxing results in alkane dehydrogenation and coke formation. The coke is the carbon source in the carbothermal reduction reaction. The novel route of two-stage refluxing is quite general and can be applied in the synthesis of similar carbides.

Keywords

ceramics / material preparation / nanoparticles / nanotechnology / nanostructured materials

Cite this article

Download citation ▾
Jiqiu Wen, Yongdi Li, Xiaopeng Meng, Guangfu Yin, Yadong Yao. Fabrication of tungsten carbide nanoparticles from refluxing derived precursor. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(2): 231-234 DOI:10.1007/s11595-015-1130-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jin G, Xu B, Wang H, . Characterization of WC/Co Coatings on Metal Substrates[J]. Mater. Lett., 2007, 61: 2 454-2 456.

[2]

Levy RB, Boudart M Platinum-like Behavior of Tungsten Carbide in Surface Catalysis[J]. Science., 1973, 181: 547-549.

[3]

Rees EJ, Brady CDA, Burstein GT Solid-state Synthesis of Tungsten Carbide from Tungsten Oxide and Carbon, and Its Catalysis by nickel[J]. Mater. Lett., 2008, 62: 1-3.

[4]

Lee TA, Lee JD, Lee DH, . The Preparation of Nanophase Tungsten Carbide Powder with Zeolite-X Catalysts[J]. Curr. Appl. Phys., 2006, 6: 1 040-1 043.

[5]

Koc R, Kodambaka SK Tungsten Carbide (WC) Synthesis from Novel Precursors[J]. J. Eur. Ceram. Soc., 2000, 20: 1 859-1 869.

[6]

Swift GA, Koc R Formation of WC Powders Using Carbon Coated Precursors[J]. J. Mater. Sci., 2000, 35: 2 109-2 113.

[7]

Medeiros FFP, De Oliveira SA, De Souza CP, . Synthesis of Tungsten Carbide Through Gas-solid Reaction at Low Temperatures[J]. Mat. Sci. Eng. A — STRUCT., 2001, 315: 58-62.

[8]

Lei M, Zhao HZ, Yang H, . Synthesis of Transition Metal Carbide Nanoparticles Through Melamine and Metal Oxides[J]. J. Eur. Ceram. Soc., 2008, 28: 1 671-1 677.

[9]

Zhang L, Yang GB, Liu G, . Ultrafine and Nanoscaled Tungsten Carbide Synthesis from Colloidal Carbon Coated Nano Tungsten Precursor[J]. Powder Metall., 2006, 49: 369-373.

[10]

Kwon YS, Andreev VM, Lomovsky OI, . Synthesis of Tungsten Carbide Nanoparticles Encapsulated with Graphite Shell[J]. J. Alloy. Compd., 2005, 386: 115-118.

[11]

Luo J, Guo Z, Gao Y, . Synthesis of Nanosized Tungsten Carbide from Phenol Formaldehyde Resin Coated Precursors[J]. Rare Metals., 2008, 27: 201-204.

[12]

Wang GM, Campbell SJ, Calka A, . Synthesis and Structural Evolution of Tungsten Carbide Prepared by Ball Milling[J]. J. Mater. Sci., 1997, 32: 1 461-1 467.

[13]

Ryu T, Sohn HY, Hwang KS, . Tungsten Carbide Nanopowder by Plasma-assisted Chemical Vapor Synthesis from WCl(6)-CH(4)-H(2) Mixtures[J]. J Mater. Sci., 2008, 43: 5 185-5 192.

[14]

Ma J, Du Y Synthesis of Nanocrystalline Hexagonal Tungsten Carbide Via Co-reduction of Tungsten Hexachloride and Sodium Carbonate with Metallic Magnesium[J]. J. Alloy. Compd., 2008, 448: 215-218.

[15]

Gruner W, Stolle S, Wetzig K Formation of COx Species During the Carbothermal Reduction of Oxides of Zr, Si, Ti, Cr, W, and Mo[J]. Int. J. Refract. Met. H., 2000, 18: 137-145.

[16]

Preiss H, Meyer B, Olschewski C Preparation of Molybdenum and Tungsten Carbides from Solution Derived Precursors[J]. J. Mater. Sci., 1998, 33: 713-722.

[17]

Hudson MJ, Peckett JW, Harris PJF Low-temperature Sol-gel Preparation of Ordered nanoparticles of Tungsten Carbide/Oxide[J]. Ind. Eng. Chem. Res., 2005, 44: 5 575-5 578.

[18]

Lemonidou AA Oxidative Dehydrogenation of C-4 hydrocarbons Over VMgO Catalyst — kinetic Investigations[J]. Appl. Catal. A. — Gen., 2001, 216: 277-284.

[19]

Nieto JML, Concepcion P, Dejoz A, . Selective Oxidation of n-butane and Butenes Over Vanadium-containing Catalysts[J]. J. Catal., 2000, 189: 147-157.

[20]

Wachs IE, Weckhuysen BM Structure and Reactivity of Surface Vanadium Oxide Species on Oxide Supports[J]. Appl. Catal. A. — Gen., 1997, 157: 67-90.

[21]

Li J, Xiong G, Feng Z, . Coke Formation during the Methanol Conversion to Olefins in Zeolites Studied by UV Raman Spectroscopy[J]. Micropor. Mesopor. Mat., 2000, 39: 275-280.

[22]

Li Y, Yao Y, Shao W, . Preparation of Titanium Carbonitride Nanoparticles from a Novel Refluxing-derived Precursor[J]. Mater. Lett., 2009, 63: 1 904-1 906.

[23]

Wen J, Yao Y, Shao W, . Preparation of Hollow TiC Nanoparticles by the Two-stage Refluxing Method[J]. Mater. Lett., 2011, 65: 1 420-1 422.

[24]

Atamas NA, Yaremko AM, Seeger T, . A Study of the Raman Spectra of Alkanes in the Fermi-resonance Region[J]. J. Mol. Struct., 2004, 708: 189-195.

[25]

Chua YT, Stair PC An Ultraviolet Raman Spectroscopic study of Coke Formation in Methanol to Hydrocarbons Conversion Over Zeolite H-MFI[J]. J. Catal., 2003, 213: 39-46.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/