Dielectric, optical and thermal properties of LDPE/ZnO hybrid film

GuiHua Ren , ZhiSong Yu , Rui Xiong

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (1) : 37 -42.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (1) : 37 -42. DOI: 10.1007/s11595-015-1096-7
Advanced Materials

Dielectric, optical and thermal properties of LDPE/ZnO hybrid film

Author information +
History +
PDF

Abstract

The hybrid films of low-density polyethylene (LDPE) embedded with zinc oxide (ZnO) particles were prepared by melt-blending process. X-ray diffraction (XRD) results illustrate that ZnO particles are distributed in the LDPE matrix and FTIR results show that no chemical bonds form between ZnO particles and LDPE matrix. The measurements of the dielectric properties of the hybrid films show that the dielectric constant of the composites reinforces and dielectric loss increases with increasing ZnO weight fraction. Moreover, the thermal properties of the LDPE/ZnO hybrid films are improved and the results of optical properties studied by ultraviolet-visible (UV-Vis) spectrometer show that the inclusion of ZnO particles can improve the anti-UV properties of the films. The improvements of the dielectric, optical and thermal properties demonstrate that the hybrid film will be a promising material in the food package and engineering fields.

Keywords

LDPE / ZnO / XRD / FTIR / UV-vis / TG-DTA / dielectric analysis

Cite this article

Download citation ▾
GuiHua Ren, ZhiSong Yu, Rui Xiong. Dielectric, optical and thermal properties of LDPE/ZnO hybrid film. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(1): 37-42 DOI:10.1007/s11595-015-1096-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kramer S, Nowak H, Springer H, . Dielectric Relaxation of Polar Aromatic in Unoriented and Oriented Linear Low-Density Polyethylene[J]. Journal of Applied Polymer Science, 2001, 79: 1 278-1 282.

[2]

Colomer-vilanova P, Montserrat-ribas S, Ribes-greus M A, . Comparative Mechanical and Dielectric Relaxational Study of Low-Density Polyethylene[J]. Polymer-Plastics Technology and Engineering, 1989, 28(7–8): 635-647.

[3]

Jang Y T, Phillips P J Dielectric Relaxation Studies of Dipolar Aromatics in Polyethylene I. Spherulitic Low-density Polyethylene [J]. Journal of Polymer Science Part B: Polymer Physics, 1986, 24(6): 1 259-1 269.

[4]

Somwangthanaroj A, Phanthawonge C, Ando S, . Effect of the Origin of ZnO Nanoparticles Dispersed in Polyimide Films on Their Photoluminescence and Thermal Stability[J]. Journal of Applied Polymer Science, 2008, 110: 1 921-1 928.

[5]

Taylor C A X-ray Diffraction Methods in Polymer Science by L. E. Alexander [J]. Acta Crystallographica A, 1970, 26: 700-701.

[6]

Yu Q J, Fu W Y, Yu C L, . Fabrication and Optical Properties of Large-Scale ZnO Nanotube Bundles via a Simple Solution Route[J]. J. Phys. Chem. C, 2007, 111(47): 1 7521-1 7526.

[7]

Bem D B, Swart H C, Luyt A S, . Properties of Green SrAL2O4 Phosphor in LDPE and PMMA Polymers[J]. Journal of Applied Polymer Science, 2010, 117: 2 635-2 640.

[8]

Mishra J K, Raychowdhury S, Das C K Heat-shrinkable Polymer Blends Based on Grafted Low-density Polyethylene and Polyurethane Elastomer[J]. Polymer International, 2000, 49: 1 615-1 623.

[9]

Costantini J M, Salvetat J P, Couvreur F, . Carbonization of Polyimide by Swift Heavy Ion Irradiations: Effects of Stopping Power and Velocity[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 243: 458-466.

[10]

Rufino E S, Monteiro E E C Characterisation of Lithium and Sodium Salts of Poly(Methacrylic Acid) by FTIR and Thermal Analyses[J]. Polymer, 2000, 41(11): 4 213-4 222.

[11]

Campbell D, White J R Polymer Characterization:Physical Techniques[M], 1989 London and New York: Chapman and Hall

[12]

Garg M, Quamara J K FTIR Analysis of High Energy Heavy Ion Irradiated Kapton-H Polyimide[J]. Indian Journal of Pure & Applied Physics, 2007, 45: 563-568.

[13]

Gulmine J V, Jannisek P R, Heise H M, . Polyethylene Characterization by FTIR[J]. Polymer Testing, 2002, 21: 557-563.

[14]

Pigeon M, Prud R E, Pezolet M, . Characterization of Molecular Orientation in Polyethylene by Raman Spectroscopy[J]. Macromolecules, 1991, 24: 5 687-5 694.

[15]

Socrates G Infrared Characteristic Group Frequencies[M], 1994 New York: Wiley-interscience Publication

[16]

Bentley P A, Hendra P J, Polarised F T Raman Studies of An Ultra-High Modulus Polyethylene Rod[J]. Spectrochimica Acta Part A, 1995, 51: 2 125-2 131.

[17]

Zou J P, Rendu P L, Musa I, . Investigation of the Optical Properties of Polyfluorene/ZnO Nanocomposites[J]. Thin Solid Films, 2011, 519: 3 997-4 003.

[18]

Wu W H, Qu H Q, Li Z J Thermal Behavior and Flame Retardancy of Flexible Poly(vinyl chloride) Treated With Zinc Hydroxystannate and Zinc Stannate[J]. Journal of Vinyl and Additive Technology, 2008, 14: 10-15.

[19]

Dang Z, Fan L, Shen Y, . Study of Thermal and Dielectric Behavior of Low-density Polyethylene Composites Reinforced with Zinc Oxide Whisker[J]. Journal of Thermal Analysis and Calorimetry, 2003, 71: 635-641.

[20]

Luyt A S, Molefi J A, Krump H Thermal Mechanical and Electrical Properties of Copper Powder Filled Low-density and Linear Lowdensity Polyethylene Composites[J]. Polymer Degradation and Stability, 2006, 91: 1 629-1 636.

[21]

Virk H S, Chandi P S, Srivastava A K Physical and Chemical Response of 70MeV Carbon Ion Irradiated Kapton-H Polymer[J]. Bull. Mater. Sci., 2001, 24: 529-534.

[22]

Zhou W Y, Yu D M, Min C, . Thermal, Dielectric, and Mechanical Properties of SiC Particles Filled Linear Low-Density Polyethylene Composites[J]. Journal of Applied Polymer Science, 2009, 112: 1 695-1 703.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/