Preparation and characterization of mullite-silicon carbide heat absorbing ceramics for solar thermal tower plant

Xiaohong Xu , Zhenggang Rao , Jianfeng Wu , Yang Zhou , Dezhi He , Yi Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (1) : 27 -32.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (1) : 27 -32. DOI: 10.1007/s11595-015-1094-9
Advanced Materials

Preparation and characterization of mullite-silicon carbide heat absorbing ceramics for solar thermal tower plant

Author information +
History +
PDF

Abstract

The in-situ synthesized mullite bonded SiC ceramics for solar thermal tower plant were prepared from Silicon carbide (SiC), manufactured aluminum hydroxide (Al(OH)3) and Suzhou kaolin via semi-dry pressing and pressureless firing. The results indicate that sample B3 (designed mullite content 15 wt%) fired at 1 400 °C exhibited optimal performance with a bending strength of 97.41 MPa. Sample B3 can withstand 30-cycles thermal shock without cracking (wind cooling from 1 100 °C to room temperature), and the bending strength after thermal shock decreased by 17.92%. When the service temperature is 600 °C, the thermal diffusivity, specific heat capacity, thermal conductivity and heat capacity are 6.48×10−2 cm2·s−1, 0.69 kJ·kg−1· K−1, 9.62 W·m−1·K−1 and 977.76 kJ·kg−1, respectively. The XRD and SEM results show that SiC, mullite, α-quartz, and tridymite are connected closely, which gives the material a good bending strength. After 30-time thermal shock cycles, the structure of samples becomes loose. SiC grains are intersectingly arranged with rodshape mullite, exhibiting a favorable thermal shock resistance. The addition of Al(OH)3 and Suzhou kaolin can accelerate the synthesis of mullite, thus to reduce the firing temperature effectively. The volume effect of tridymite is relatively small, improving the thermal shock resistance of materials. A higher designed mullite content yields a lower loss rate of bending strength. The mullite content should not be more than 15 wt% or else the bending strength would be diminished.

Keywords

heat absorbing materials / mullite-SiC composite ceramics / thermal shock resistance / thermal properties

Cite this article

Download citation ▾
Xiaohong Xu, Zhenggang Rao, Jianfeng Wu, Yang Zhou, Dezhi He, Yi Liu. Preparation and characterization of mullite-silicon carbide heat absorbing ceramics for solar thermal tower plant. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(1): 27-32 DOI:10.1007/s11595-015-1094-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu J F, Leng G H, Xu X H, . In-situ Synthesis of a Cordierite-Andalusite Composite for Solar Thermal Storage[J]. Solar Energy Materials & Solar Cells, 2013, 108: 9-16.

[2]

Reddy V S, Kaushik S C, Ranjan K R, . State-of-the-art of Solar Thermal Power Plants-A Review[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 258-273.

[3]

Augsburger G, Favrat D Modeling of the Receiver Transient Flux Distribution due to Cloud Passages on a Solar Tower Thermal Power Plant[J]. Solar Energy, 2013, 87: 42-52.

[4]

Wang Z F, Bai F W, Li X, . A Kind of Silicon Carbide Foam Ceramic Solar Air Heat Absorber [P], 2008

[5]

Ramani B M, Akhilesh G, Kumar R Performance of a Double Pass Solar Air Collector[J]. Solar Energy, 2010, 84(11): 1 929-1 937.

[6]

Xu X H, Rao Z G, Wu J F, . In-situ Synthesis and Thermal Shock Resistace of Cordierite/Silicon Carbide Composites Used for Solar Absorber Coating[J]. Solar Energy Materials & Solar Cells, 2014, 130: 257-263.

[7]

Wu J F, Liu M, Xu X H, . A Novel Si3N4-SiC Ceramic Used as Volumetric Receivers[J]. International Journal of Applied Ceramic Technology, 2014, 11(2): 246-253.

[8]

Wu Z Y, Caliot C, Flamant G, . Coupled Radiation and Flow Modeling in Ceramic Foam Volumetric Solar Air Receivers[J]. Solar Energy, 2011, 85(9): 2 374-2 385.

[9]

Bai J G, Yang X H, Shi Y G, . Fabrication of Directional SiC Porous Ceramics Using Fe2O3 as Pore-Forming[J]. Materials Letters, 2012, 78: 192-194.

[10]

Ding S Q, Zhu S M, Zeng Y P, . Fabrication of Mullite-Bonded Porous Silicon Carbide Ceramics by In-situ Reaction Bonding[J]. Journal of European Ceramic Society, 2007, 27(4): 2 095-2 102.

[11]

Jing Y N, Deng X Y, Li J B, . Fabrication and Properties of SiC/Mullite Composite Porous Ceramics[J]. Ceramics International, 2014, 40(1): 1 329-1 334.

[12]

Li D, Yao X M, Chen J, . Microstructure and Reaction Mechanism of SiC Ceramic with Mullite-Zircon as a New Liquid-Phase Sintering Additives System[J]. Materials Science and Engineering: A, 2013, 559: 510-514.

[13]

She J H, Ohji T, Kanzaki S, . Oxidation Bonding of Porous Silicon Carbide Ceramics with Synergistic Performance[J]. Journal of the European Ceramic Society, 2003, 24(2): 331-334.

[14]

Chen Y F, Wang M C, Hon M H Phase Transformation and Growth of Mullite in Kaolin Ceramics[J]. Journal of the European Ceramic Society, 2004, 24(8): 2 389-2 397.

[15]

Rendtorff N M, Garrido L B, Aglietti E F Thermal Shock Resistance and Fatigue of Zircon-Mullite Composite Materials[J]. Ceramics International, 2011, 37(4): 1 427-1 434.

[16]

Xu X H, Jiao G H, Wu J F, . Effect of Nano-ZrO2 on Microstructure and Thermal Shock Behaviour of Al2O3/SiC Composite Ceramics Used in Solar Thermal Power[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(2): 285-289.

[17]

Xu X H, Ma X H, Wu J F, . In-situ. J. Wuhan University of Technology-Mater. Sci. Ed., 2013, 28(3): 407-412.

[18]

Wu J F, Fang B Z, Xu X H, . Preparation and Characterization of Alumina-Silicon Carbide-Zirconia Thermal Storage Ceramics for Solar Thermal Power Generation[J]. Journal of the Chinese Ceramic Society, 2013, 41(8): 1 063-1 069.

[19]

Patel M, Bhanu Prasad V V, Jayaram V Heat Conduction Mechanisms in Hot Pressed ZrB2 and ZrB2-SiC Composites[J]. Journal of the European Ceramic Society, 2013, 33(10): 1 615-1 624.

[20]

Chen G Q, Zhang R B, Zhang X H, . Microstructure and Properties of Hot Pressed Zr2(Al(Si))4C5/SiC Composites[J]. Journal of Alloys and Compounds, 2009, 481(1–2): 877-880.

[21]

Cheng L F, Xu Y D, Zhang Q, . Thermal Diffusivity of 3D C/SiC Composites From Room Temperature to 1 400 °C[J]. Carbon, 2003, 41(4): 707-711.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/