Influence of Pr3+ doping on the microstructure of ZnO quantum dots

Hong Li , Mengling Xia , Kaifei Luo , Paul W. Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (1) : 16 -21.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2015, Vol. 30 ›› Issue (1) : 16 -21. DOI: 10.1007/s11595-015-1092-y
Advanced Materials

Influence of Pr3+ doping on the microstructure of ZnO quantum dots

Author information +
History +
PDF

Abstract

Pr3+ doped ZnO quantum dots (QDs) were successfully synthesized by sol-gel process. X-ray diffraction (XRD) and X-ray Phtoelectron spectroscopy (XPS) were used to analyze the microstructure variation of ZnO QDs and the chemical environment of Pr3+ with increasing Pr3+ doping concentrations. Most of Pr3+ ions distribute on the surface of ZnO QDs while a few of them penetrate into the ZnO lattice to substitute Zn2+ which causes the lattice distortion and the change of the crystal size. With increasing concentration of Pr3+ ions, the crystal size of ZnO QDs firstly increases and then decreases meanwhile the amorphization gradually increases. New Pr-O-Zn bonds formed after Pr3+ doping and Pr3+ ions have at least two chemical bonding environments: one is Pr-O-Zn bond and the other is Pr-O bond surrounded by oxygen vacancies.

Keywords

Pr3+ doping / ZnO QDs / sol-gel process / microstructure

Cite this article

Download citation ▾
Hong Li, Mengling Xia, Kaifei Luo, Paul W. Wang. Influence of Pr3+ doping on the microstructure of ZnO quantum dots. Journal of Wuhan University of Technology Materials Science Edition, 2015, 30(1): 16-21 DOI:10.1007/s11595-015-1092-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Leutwyler W K, Bürgi S L, Burgl H B Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271(5251): 933-937.

[2]

Hagfeld A, Graetzel M Light-induced Redox Reactions in Nanocrystalline Systems[J]. Chem. Rev., 1995, 95(1): 49-68.

[3]

Zhang X, Hou S, Mao H, . Influence of Annealing Temperature on the Photoluminescence Properties of ZnO Quantum Dots[J]. Appl. Surf. Sci., 2010, 256(12): 3 862-3 865.

[4]

Wu Y L, Tok A I Y, Boey F Y C, . Surface Modification of ZnO Nanocrystals[J]. Appl. Surf. Sci., 2007, 253(12): 5 473-5 479.

[5]

Bera D, Qian L, Sabui S, . Photoluminescence of ZnO Quantum Dots Produced by a Sol-gel Process[J]. Opt. Mater., 2008, 30(8): 1 233-1 239.

[6]

Shi R, Yang P, Dong X, . Growth of Flower-like ZnO on ZnO Nanorod Arrays Created on Zinc Substrate through Low-temperature Hydrothermal Synthesis[J]. Appl. Surf. Sci., 2013, 264: 162-170.

[7]

Zeng H, Yang S, Cai W Reshaping Formation and Luminescence Evolution of ZnO Quantum Dots by Laser-induced Fragmentation in Liquid[J]. J. Phys. Chem. C, 2011, 115(12): 5 038-5 043.

[8]

Wu H Z, Qiu D J, Cai Y J, . Optical Studies of ZnO Quantum Dots Grown on Si (001)[J]. J. Cryst. Growth, 2002, 245(1): 50-55.

[9]

Look D C Progress in ZnO Materials and Devices[J]. J. Electron. Mater., 2006, 35(6): 1 299-1 305.

[10]

Klingshirn C ZnO: Material, Physics and Applications[J]. Chem. Phys. Chem., 2007, 8(6): 782-803.

[11]

Yu L, Zhu Q, Fan D, . Development in p-type Doping of ZnO[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2012, 27(6): 1 184-1 187.

[12]

Jayanthi K, Chawla S Synthesis of Mn Doped ZnO Nanoparticles with Biocompatible Capping[J]. Appl. Surf. Sci., 2010, 256(8): 2 630-2 635.

[13]

Premkumar T, Zhoua Y S, Gaoa Y, . Morphological Transition of ZnO Nanostructures Influenced by Magnesium Doping[J]. Appl. Surf. Sci., 2012, 258(7): 2 297-2 300.

[14]

Gao F, Zhao J, Wu K Structure and Magnetic Properties of Ni-doped ZnO Powder[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25(5): 770-773.

[15]

Cheng G, Pang K, Ma L, . Effect of Dy on Structure and Magnetic Properties of CoPt Alloys[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28(4): 840-843.

[16]

Yin H, Zhao G, Liu P, . Preparation and Performance of Magnetooptical Glasses Doped with Tb3+/Dy3+[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29(4): 684-687.

[17]

Lang J, Li X, Yang J, . Rapid Synthesis and Luminescence of the Eu3+, Er3+ Codoped ZnO Quantum-dot Chain via Chemical Precipitation Method[J]. Appl. Surf. Sci., 2011, 257(22): 9 574-9 577.

[18]

Lupan O, Pauporté T, Viana B, . Eu-doped ZnO Nanowire Arrays Grown by Electrodeposition[J]. Appl. Surf. Sci., 2013, 282: 782-788.

[19]

Yu Y, Chen D, Huang P, . Structure and Luminescence of Eu3+ Doped Glass Ceramics Embedding ZnO Quantum Dots[J]. Ceram. Int., 2010, 36(3): 1 091-1 094.

[20]

Wang M, Huang C, Huang Z, . Sythesis and Photoluminescence of Eu-doped ZnO Microrods Prepared by Hydrothermal Method[J]. Opt. Mater., 2009, 31(10): 1 502-1 505.

[21]

Li H, Luo K, Xia M, . Synthesis and Optical Properties of Pr3+-doped ZnO Quantum Dots[J]. J. Non-Cryst. Solids, 2014, 383(1): 176-180.

[22]

Armelao L, Bottaro G, Pascolini M, . Structure Luminescence Correlations in Europium Doped Sol-gel ZnO Nanopowders[J]. J. Phys. Chem. C, 2008, 112(11): 4 049-4 054.

[23]

Yu Y, Wang Y, Chen D, . Enhanced Emissions of Eu3+ by Energy Transfer from ZnO Quantum Dots Embedded in SiO2 Glass[J]. Nanotechnology, 2008, 19(5): 055 711

[24]

Du Y P, Zhang Y W, Sun L D, . Efficient Energy Transfer in Monodisperse Eu-Doped ZnO Nanocrystal Sythesized from Metal Acetylacetonates in High Boiling Solvents[J]. J. Phys. Chem. C, 2008, 112(32): 12 234-12 241.

[25]

Fink N, Wilson B, Grundmeier G Formation of Ultra-thin Amorphous Conversion Films on Zinc Alloy Coatings: Part 1. Composition and Reactivity of Native Oxides on ZnAl (0.05%) Coatings[J]. Electrochim. Acta, 2006, 51(14): 2 956-2 963.

[26]

Klug H P, Alexaander L E X-ray Diffraction Procedure for Crystalline and Amorphous Materials[M], 1974 New York: Wiley

[27]

Lin J, Yu J C, Lo D, . Photocatalytic Activity of Rutile Ti1−xSnxO2 Solid Solutions[J]. J. Catal., 1999, 183: 368-372.

[28]

Chastain J, Moulder J F, King R C Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division[M], 1995 OH: Perkin-Elmer Corporation

[29]

Briggs D, Seah M P Practical Surface Analysis: by Auger and X-ray Photoelectron Spectroscopy[M], 1983 New York: Wiley

[30]

Gasteiger J, Marsili M Iterative Partial Equalization of Orbital Electronegativity — a Rapid Access to Atomic Charges[J]. Tetrahedron, 1980, 36(22): 3 219-3 228.

[31]

Wang Z G, Zu X T, Zhu S, . Green Luminescence Originates from Surface Defects in ZnO Nanoparticles[J]. Physica. E, 2006, 35(1): 199-202.

[32]

C Fan J C, Goodenough J B X-ray Photoemission Spectroscopy Studies of Sn-Doped Indium-oxide Films[J]. J. Appl. Phys., 2008, 48(8): 3 524-3 531.

[33]

Zhang P F, Liu X L, Wei H Y, . Rapid Thermal Annealing Properties of ZnO Films Grown Using Methanol as Oxidant[J]. J. Phys. D. Appl. Phys., 2007, 40(19): 6 010

[34]

Meng L J, Moreira de Sá CP, Santos M P Dos Study of the Structural Properties of ZnO Thin Films by X-ray Photoelectron Spectroscopy[J]. Appl. Surf. Sci., 1994, 78(1): 57-61.

[35]

Chen Y Y, Hsu J C, Lee C Y, . Influence of Oxygen Partial Pressure on Structural, Electrical, and Optical Properties of Al-Doped ZnO Film Prepared by the Ion Beam Co-sputtering Method[J]. J. Mater. Sci., 2013, 48(3): 1 225-1 230.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/