Influence of structural variations on electrical conductivity and solubility of 1-vinyl-3-alkylimidazole halogen ionic liquids

Yimei Tang , Xiaoling Hu , Ping Guan , Xiaoqian Li , Tian Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 1090 -1097.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 1090 -1097. DOI: 10.1007/s11595-014-1048-7
Organic Materials

Influence of structural variations on electrical conductivity and solubility of 1-vinyl-3-alkylimidazole halogen ionic liquids

Author information +
History +
PDF

Abstract

Several 1-vinyl-3-alkylimidazolium halogens [VRIM]X, which are functional materials with ethylenic bonds, were synthesized using the microwave-assisted synthesis method. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy were carried out to analyze the resultant structures. The electrochemical properties and solubility of [VRIM]Br were investigated and discussed in detail. The temperature dependence of pure [VRIM]Br over a wide temperature range of 298.15–323.15 K fitted the Arrhenius equation well. At certain low concentrations, the electrical conductivity of the [VRIM]Br solution significantly increased with increasing solution concentration. The electrical conductivities of the [VRIM]Br observed in water, methanol, and ethanol showed the trend σ water > σ methanol > σ ethanol. Conductometry showed that the critical micelle concentrations of the bromines in water, methanol, and ethanol were 6.8–6.9 × 10−6, 1.4–1.5 × 10−5, and 1.9–2.0×10−5 mol·L−1, respectively; these results indicate that [VRIM]Br is an excellent surfactant. The solubility of [VRIM]X in common solvents was determined at 293.15 K, and results indicated that a decrease in solubility could be observed with decreasing dielectric constant of the solvent, elongation of the alkyl chain of the cation, and increasing anion size. Solubility parameters were also determined according to the Hildebrand-Scoff equation.

Keywords

1-vinyl-3-alkylimidazole halogen / ionic liquids / solubility / electrical conductivity / critical micelle concentration

Cite this article

Download citation ▾
Yimei Tang, Xiaoling Hu, Ping Guan, Xiaoqian Li, Tian Tian. Influence of structural variations on electrical conductivity and solubility of 1-vinyl-3-alkylimidazole halogen ionic liquids. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(5): 1090-1097 DOI:10.1007/s11595-014-1048-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Earle M J, Seddon K R Ionic Liquids. Green Solvents for the Future[J]. Pure Appl.Chem., 2000, 72(7): 1 391-1 398.

[2]

Li X R Green Solvents: Synthesis and Application of Ionic Liquids[M], 2005 Beijing China Chemical Industry

[3]

Zhou Y, Antonietti M Synthesis of Very Small TiO2 Nanocrystals in a Room-temperature Ionic Liquid and Their Self-assembly toward Mesoporous Spherical Aggregates[J]. J. Am. Chem. Soc., 2003, 125(49): 14 960-14 961.

[4]

Zhou Y, Antonietti M Series of Highly Ordered, Super-microporus, Lamellar Silicas Prepared by Nanocasting with Ionic Liquids[J]. Chem. Mater., 2004, 16(3): 544-550.

[5]

Safavi A, Maleki N, Farjami F, . Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticle Electrodeposited on Carbon Ionic Liquid Composite Electrode[J]. J. Electroanal. Chem., 2009, 626(1–2): 75-79.

[6]

Zell C A, Freyland W In Situ STM and STS Study of Co and Co-Al Alloy Electrodeposition from an Ionic Liquid[J]. Langmuir, 2003, 19(18): 7 445-7 450.

[7]

Scheeren C W, Machado G, Dupont J, . Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids: Synthesis from an Organometallic Precursor, Characterization, and Catalytic Properties in Hydrogenation Reactions[J]. Inorg. Chem., 2003, 42(15): 4 738-4 742.

[8]

Gomes S A S S, Nogueira J M F, Rebelo M J F An Amperometric Biosensor for Polyphenplic Compounds in Red Wine[J]. Biosens. Bioelectron., 2004, 20(6): 1 211-1 216.

[9]

Rehman A, Zeng X Q Ionic Liquids as Green Solvents and Electrolytes for Robust Chemical Sensor Development[J]. Accounts Chem. Res., 2012, 45(10): 1 667-1 677.

[10]

Colovic M, Vuk A S, Hajzeri M, . Structural Studies of Alkoxysilylfunctionalised Ionic Liquid and Its Application in a Hybrid Electrochromic Device[J]. Mater. Res. Bull., 2012, 47(11): 3 160-3 169.

[11]

Kavanagh A, Fraser K J, Byrne R, . An Electrochromic Ionic Liquid: Design, Characterization, and Performance in a Solid-State Platform[J]. ACS Appl. Mater. Interfaces., 2013, 5(1): 55-62.

[12]

Sydam R, Deepa M, Srivastava A K Electrochromic Device Response Controlled by an in Situ Polymerized Ionic Liquid Based Gel Electrolyte[J]. RSC Advances, 2012, 2(24): 9 011-9 021.

[13]

Kubo W, Kambe S, Nakade S, . Photocurrent-determining Processes in Quasi-solid-state Dye-sensitized Solar Cells Using Ionic Gel Electrolytes[J]. J. Phys. Chem. B, 2003, 107(18): 4 374-4 381.

[14]

Kawano R, Matsui H, Matsuyama C, . High Performance Dyesensitized Solar Cells Using Ionic Liquids as Their Electrolytes[J]. J. Photoch. Photobio. A: Chemistry, 2004, 164(1–3): 87-92.

[15]

Fredin K, Gorlov M, Pettersson H, . On the Influence of Anions in Binary Ionic Liquid Electrolytes for Monolithic Dye-sensitized Solar Cells[J]. J. Phys. Chem. C, 2007, 111(35): 13 261-13 266.

[16]

Gardas R L, Costa H F, Freire M G, . Densities and Derived Thermodynamic Properties of Imidazolium-, Pyridinium-, Pyrrolidinium-, and Piperidinium-based Ionic Liquids[J]. J. Chem. Eng. Data, 2008, 53(3): 805-811.

[17]

Tigelaar D M, Meador M A B, Bennett W R Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Cross-linked Polymers[J]. Macromolecules, 2007, 40(12): 4 159-4 164.

[18]

Jin J, Wen Z Y, Liang X, . Gel Polymer Electrolyte with Ionic Liquid for High Performance Lithium Sulfur Battery[J]. Solid State Ionics, 2012, 225: 604-608.

[19]

Monaco S, Arangio A M, Soavi F, . An Electrochemical Study of Oxygen Reduction in Pyrrolidinium-based Ionic Liquids for Lithium/oxygen Batteries[J]. Electrochim. Acta, 2012, 83: 94-104.

[20]

Kunze M, Paillard E, Jeong S, . Inhibition of Self-aggregation in Ionic Liquid Electrolytes for High-energy Electrochemical Devices[J]. J. Phys. Chem. C, 2011, 115(39): 19 431-19 436.

[21]

Sato T, Masuda G, Takagi K Electrochemical Properties of Novel Ionic Liquids for Electric Double Layer Capacitor Applications[J]. Electrochim. Acta, 2004, 49(21): 3 603-3 611.

[22]

Li Z Y, Liu H T, Liu Y, . A Room-temperature Ionic-liquidtemplated Proton-conducting Gelatinous Electrolyte[J]. J. Phys. Chem. B, 2004, 108(45): 17512-17518.

[23]

Guo B, Zhang M M, Ren A L, . Electrical Conductivity of Caprolactam Tetrabutylammonium Bromide Ionic Liquids in Aqueous and Alcohol Binary Systems[J]. J. Chem. Eng. Data, 2010, 55(10): 4 340-4 342.

[24]

Rilo E, Vila J, Pico J, . Electrical Conductivity and Viscosity of Aqueous Binary Mixtures of 1-alkyl-3-methyl Imidazolium Tetrafluoroborate at Four Temperatures[J]. J. Chem. Eng. Data, 2010, 55(2): 639-644.

[25]

Rilo E, Vila J, Garcia M, . Viscosity and Electrical Conductivity of Binary Mixtures of CnMIM-BF4 with Ethanol at 288 K, 298 K, 308 K, and 318 K[J]. J. Chem. Eng. Data, 2010, 55(11): 5 156-5 163.

[26]

Haddleton D M, Welton T, Carmichael A J Ionic Liquids in Synthesis[M], 2008 Weinheim Wiley-VCH

[27]

Lu J, Yan F, Texter J Advanced Applications of Ionic Liquids in Polymer Science[J]. Progr. Polym. Sci., 2009, 34(5): 431-448.

[28]

Green O, Grubjesic S, Lee S, . The Design of Polymeric Ionic Liquids for the Preparation of Functional Materials[J]. Polym. Rev., 2009, 49(4): 339-360.

[29]

Wasserscheid P, Welton T Ionic Liquids in Synthesis[M], 2003 Weinheim Wiley-VCH Verlag

[30]

Vila J, Gines P, Pico J M, . Temperature Dependence of the Electrical Conductivity in EMIM-based Ionic Liquids Evidence of Vogel-Tamman-Fulcher Behavior[J]. Fluid Phase Equilibr., 2006, 242(2): 141-146.

[31]

Wang J J, Wang H Y, Zhang S L, . Conductivities, Volumes, Fluorescence and Aggregation Behavior of Ionic Liquids [C4mim][BF4] and [Cnmim]Br(n=4, 6, 8, 10, 12) in Aqueous Solution[J]. J. Phys. Chem. B, 2007, 111(22): 6 181-6 188.

[32]

Kang W P, Dong B, Gao Y N, . Aggregation Behavior of Longchain Imidazolium Ionic Liquids in Hylammonium Nitrate[J]. Colloid Polym. Sci., 2010, 288(12–13): 1 225-1 232.

[33]

Sun I W, Lin Y C, Chen B K, . Electrochemical and Physicochemical Characterizatizations of Butylsulfate-based Ionic Liquids[J]. Int. J. Electrochem. Sci., 2012, 7(8): 7 206-7 224.

[34]

Vila J, Gines P, Rilo E, . Great Increase of the Electric Conductivity of Ionic Liquids in Aqueous Solutions[J]. Fluid Phase Equilib., 2006, 247(1–2): 32-39.

[35]

Vila J, Varela L M, Cabeza O Cation and Anion Sizes Influence in the Temperature Dependence of the Electrical Conductivity in Nine Imidazolium Based Ionic Liquids[J]. Electrochim. Acta, 2007, 52(26): 7 413-7 417.

[36]

Tshibangu P N, Ndwandwe S N, Dikio E D Density, Viscosity and Conductivity Study of 1-Butyl-3-methylimidazolium Bromide[J]. Int. J. Electrochem. Sci., 2011, 6(6): 2 201-2 213.

[37]

Inoue T, Yamakawa H Micelle Formation of Nonionic Surfastants in a Room Temperature Ionic Liquid, 1-Butyl-3-methylimidazolium Tetrafluoroborate: Surfactant Chain Length Dependence of the Critical Micelle Concentration[J]. J. Colloid Interf. Sci., 2011, 356(2): 798-802.

[38]

Inoue T, Ebina H, Dong B, . Electrical Conductivity Study on Micelle Formation of Long-chain Imidazolium Ionic Liquids in Aqueous Solution[J]. J. Colloid Interf. Sci., 2007, 314(1): 236-241.

[39]

Rosen M J Surfactants and Interfacial Phenomena[M], 2004 New Jersey John Wiley & Sons, Inc., Hoboken

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/