Effects of BMP-2 patterns on bovine chondrocytes adhesion and alignment

Changjiang Pan , Bingbing Zhang , Man Zhang , Yunxiao Dong , Hongyan Ding

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 1057 -1062.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 1057 -1062. DOI: 10.1007/s11595-014-1043-z
Biomaterials

Effects of BMP-2 patterns on bovine chondrocytes adhesion and alignment

Author information +
History +
PDF

Abstract

Striped bone morphogenetic protein-2 (BMP-2) patterns are created on polystyrene (PS) surfaces by microcontact printing (μCP) to investigate the influences of the protein patterns on bovine chondrocytes behaviors. Due to the excellent ability of BMP-2 to recruit cells and the limited ability of blank PS areas to bind cells, bovine chondrocytes preferentially attach on the protein areas, leading to formation of cell patterns and elongated cell morphologies to some degree. The BMP-2 protein stripe can guide bovine chondrocytes adhesion and alignment. The pattern dimensions can significantly affect the cell adhesion and spread. The protein stripe width mainly controls the cell elongation and orientation while the pattern spacing mainly affects the cell spread towards neighboring stripes. Therefore, the cell morphology and distribution direction can be controlled by precisely designing the pattern shapes and sizes. We believe that the present study could find applications for surface modification of biomaterials’ surfaces to create the bioactive patterns to control chondrocytes adhesion, spreading and even cell function. It may be helpful for the development of novel biomaterials for cartilage repair.

Keywords

protein pattern / chondrocyte / cartilage

Cite this article

Download citation ▾
Changjiang Pan, Bingbing Zhang, Man Zhang, Yunxiao Dong, Hongyan Ding. Effects of BMP-2 patterns on bovine chondrocytes adhesion and alignment. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(5): 1057-1062 DOI:10.1007/s11595-014-1043-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li F, Li B, Wang Q M, . Cell Shape Regulates Collagen Type I Expression in Human Tendon Fibroblasts[J]. Cell. Motil. Cytoskeleton, 2008, 65(4): 332-341.

[2]

Hwang N S, Varghese S, Elisseeff J Controlled Differentiation of Stem Cells[J]. Adv. Drug Deliv. Revi., 2008, 60(2): 199-214.

[3]

Chen C S, Mrksich M, Huang S, . Geometric Control of Cell Life and Death[J]. Science, 1997, 276(5317): 1 425-1 427.

[4]

Lu X, Leng Y Comparison of the Osteoblast and Myoblast Behavior on Hydroapatite Microgrooves[J]. J. Biomed. Mate. Res. B. Appl. Biomater., 2009, 90(1): 438-445.

[5]

Pan C J, Dong Y X, Nie Y D, . Effects of Protein Micropatterns of Biomaterials Surfaces on Human Chondrocytes Morphology and Protein Expression[J]. Prog. Biochem. Biophy., 2010, 37(12): 1 296-1 302.

[6]

Pan C J, Nie Y D Microcontact Printing of BMP-2 and Its Effect on Human Chondrocytes Behavior[J]. Appl. Surf. Sci., 2010, 256(6): 1 878-1 882.

[7]

Csucs G, Michel R, Lussi J W, . Microcontact Printing of Novel Co-Polymers in Combination with Proteins for Cell-Biological Applications[J]. Biomaterials, 2003, 24(10): 1 713-1 720.

[8]

Tang J, Peng R, Ding J The Regulation of Stem Cell Differentiation by Cell-Cell Contact on Micropatterned Material Surfaces[J]. Biomaterials, 2010, 31(9): 2 470-2 476.

[9]

Mcbeath R, Pirone D M, Nelson C M, . Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment[J]. Dev. Cell, 2004, 6(4): 483-495.

[10]

Dalby M J, Gadegaard N, Tare R, . The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder[J]. Nat. Mater., 2007, 6(12): 997-1 003.

[11]

Tanimoto K, Kitamura R, Tanne Y, . Modulation of Hyaluronan Catabolism in Chondrocytes by Mechanical Stimuli[J]. J. Biomed. Mater. Rese. A, 2010, 93(1): 373-380.

[12]

Van Kampen G P J, Veldhuijzen J P, Kuijer R, . Cartilage Response to Mechanical Force in High-Density Chondrocyte Cultures[J]. Arthritis Rheum., 1985, 28(4): 419-424.

[13]

Salter D M, Millward-Sadler S J, Nuki G, . Differential Responses of Chondrocytes from Normal and Osteoarthritic Human Articular Cartilage to Mechanical Stimulation[J]. Biorheology, 2002, 39(1–2): 97-108.

[14]

Perl A, Reinhoudt D N, Huskens J Microcontact Printing: Limitations and Achievements[J]. Adv. Mater., 2009, 21(22): 2 257-2 268.

[15]

Feinberg A W, Feigel A, Shevkoplyas S S, . Muscular Thin Films for Building Actuators and Powering Devices[J]. Science, 2007, 317(5843): 1 366-1 370.

[16]

Sampath T K, Coughlin J E, Whetstone R M, . Bovine Osteogenic Protein Is Composed of Dimers of OP-1 and BMP-2A, Two Members of the Transforming Growth Factor-Beta Superfamily[J]. J. Biol. Chem., 1990, 265(22): 13 198-13 205.

[17]

Chen D, Zhao M, Mundy G R Bone Morphogenetic Proteins[J]. Growth Factors, 2004, 22(4): 233-241.

[18]

Sailor L Z, Hewick R M, Morris E A Recombinant Human Bone Morphogenetic Protein-2 Maintains the Articular Chondrocyte Phenotype in Long-Term Culture[J]. J. Orthop. Res., 1996, 14(6): 937-945.

[19]

Goldman R D, Khuon S, Chou Y, . The Function of Intermediate Filaments in Cell Shape and Cytoskeletal Integrity[J]. J. Cell. Biol., 1996, 134(4): 971-983.

[20]

Haudenschild D R, Chen J, Pang N, . Vimentin Contributes to Changes in Chondrocyte Stiffness in Osteoarthritis[J]. J. Orthop. Res., 2011, 29(1): 20-25.

[21]

Ko Y, Kobbe B, Nicolae C, . Matrilin-3 Is Dispensable for Mouse Skeletal Growth and Development[J]. Mol. Cell. Biol., 2004, 24(4): 1 691-1 699.

[22]

Cormier S A, Mello M A, Kappen C Normal Proliferation and Differentiation of Hoxc-8 Transgenic Chondrocytes in vitro[J]. BMC Dev. Biol., 2003, 3(4): 1-16.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/