Prediction of the biaxial failure strength of composite laminates with unit cell analytic model

Lin Zhao , Boming Zhang , Xinlin Qing

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 923 -927.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 923 -927. DOI: 10.1007/s11595-014-1021-5
Advanced Materials

Prediction of the biaxial failure strength of composite laminates with unit cell analytic model

Author information +
History +
PDF

Abstract

A new method to predict the ultimate strength of fiber reinforced composites under arbitrary load condition is introduced. The micromechanics strength theory is used to perform the final failure prediction of composite laminates. The theory is based on unit cell analytic model which can provide the ply composite material properties by only using the constituent fiber and matrix properties and the laminate geometric parameters without knowing any experimental information of the laminates. To show that this method is suitable for predicting the strength of composite laminates, the micromechanics strength theory is ranked by comparing it with all the micro-level and the best two macro-level theories chosen from the World Wide Failure Exercise. The results show that this method can be used for predicting strength of any composite laminates and provide a direct reference for composite optimum design.

Keywords

composites / strength / failure criteria / unit cell analytic model

Cite this article

Download citation ▾
Lin Zhao, Boming Zhang, Xinlin Qing. Prediction of the biaxial failure strength of composite laminates with unit cell analytic model. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(5): 923-927 DOI:10.1007/s11595-014-1021-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kucher N K, Zarazovskii M N Bearing Strength Prediction for Reinforced Composite Laminates for Cryogenic and Aerospace Applications[J]. Strength of Materials, 2008, 40(2): 168-179.

[2]

Zinoviev P, Grigoriev S V, Labedeva O V, . Strength of Multilayered Composites under Plane Stress State[J]. Compos. Sci. Technol., 1998, 58: 1 209-1 224.

[3]

Liu K S, Tsai S W A Progressive Quadratic Failure Criterion of a Lamintes[J]. Compos. Sci. Technol., 1998, 58: 123-132.

[4]

Cuntze R G, Freund A The Predictive Capability of Failure Criterion of a Laminate[J]. Compos. Sci. Technol., 2004, 64: 343-377.

[5]

Zhang B M, Zhao L Progressive Damage and Failure Modeling in Fiber-reinforced Laminated Composites Containing a Hole[J]. International Journal of Damage Mechanics, 2012, 21(6): 893-911.

[6]

Pineda E J, Waas A M, Bednarcyk B A A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures[R], 2008

[7]

Soden P D, Kaddour A S, Hinton M J Recommendations for Designers and Researchers Resulting from the World-Wide Failure Exercise[J]. Compos. Sci. Technol., 2004, 64: 589-604.

[8]

Gotsis P K, Chamis C C Prediction of Composite Laminate Fracture: Micromechanics and Progressive Fracture[R], 1996

[9]

Huang Z M Micromechanical Prediction of Ultimate Strength of Transversely Isotropic Fibrous Composites[J]. Int. J. Solids Struct., 2001, 38: 4 147-4 172.

[10]

Mayes S J, Hansen A C Composite Laminate Failure Analysis Using Multicontinuum Theory[J]. Compos. Sci. Technol., 2004, 64: 379-394.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/