Small Rb+ doping in CaCu3Ti4O12-A possible approach to reduce dielectric loss

Fan Yi , Rui Xiong

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 912 -916.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (5) : 912 -916. DOI: 10.1007/s11595-014-1019-z
Advanced Materials

Small Rb+ doping in CaCu3Ti4O12-A possible approach to reduce dielectric loss

Author information +
History +
PDF

Abstract

Ca1−xRb xCu3Ti4O12 (x=0, 0.01, 0.02 and 0.03) ceramics were synthesized by the sol-gel method. Doping Rb+ reduces dielectric loss, which reaches minimum when x=0.02. By measuring properties of electrical conduction, larger leakage current density and height of grain-boundary Schottky potential barrier (ϕB) were found in the doped samples, and ϕB became maximum when x=0.02. These results are attributed to the increase in the amount of oxygen vacancies and the formation of Cu-rich/Ti-poor grain-boundary layers, and it can be concluded that the dielectric loss in CCTO ceramic can be reduced by manipulating the composition and electrical properties of grain boundary.

Keywords

CaCu3Ti4O12 / dielectric constant / dielectric loss / electrical conduction

Cite this article

Download citation ▾
Fan Yi, Rui Xiong. Small Rb+ doping in CaCu3Ti4O12-A possible approach to reduce dielectric loss. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(5): 912-916 DOI:10.1007/s11595-014-1019-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ramirez A P, Subramanian M A, Gardel M, . Giant Dielectric Constant Response in a Copper-Titanate[J]. Solid State Communications, 2000, 115(5): 217-220.

[2]

Subramanian M A, Li D, Duan N, . High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases[J]. Journal of Solid State Chemistry, 2000, 151(2): 323-325.

[3]

Adams T B, Sinclair D C, West A R Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12 Ceramics[J]. Advanced Materials, 2002, 14(18): 1 321-1 323.

[4]

Li J, Subramanian M A, Rosenfeld H D, . Clues to the Giant Dielectric Constant of CaCu3Ti4O12 in the Defect Structure of “SrCu3Ti4O12”[J]. Chemistry of Materials, 2004, 16(25): 5 223-5 225.

[5]

Fang T T, Shiau H K Mechanism for Developing the Boundary Barrier Layers of CaCu3Ti4O12[J]. Journal of the American Ceramic Society, 2004, 87(11): 2 072-2 079.

[6]

Sinclair D C, Adams T B, Morrison F D, . CaCu3Ti4O12: One-Step Internal Barrier Layer Capacitor[J]. Applied Physics Letters, 2002, 80(12): 2 153-2 155.

[7]

Zhang J L, Zheng P, Wang C L, . Dielectric Dispersion of CaCu3Ti4O12 Ceramics at High Temperatures[J]. Applied Physics Letters, 2005, 87(14): 142 901-142 901-3.

[8]

Chiodelli G, Massarotti V, Capsoni D, . Electric and Dielectric Properties of Pure and Doped CaCu3Ti4O12 Perovskite Materials[J]. Solid State Communications, 2004, 132(3): 241-246.

[9]

Liu L, Fan H, Fang P, . Electrical Heterogeneity in CaCu3Ti4O12 Ceramics Fabricated by Sol-Gel Method[J]. Solid State Communications, 2007, 142(10): 573-576.

[10]

Liu L, Fan H, Fang P, . Sol-Gel Derived CaCu3Ti4O12 Ceramics: Synthesis, Characterization and Electrical Properties[J]. Materials Research Bulletin, 2008, 43(7): 1 800-1 807.

[11]

Lee S Y, Hong Y W, Im Yoo S Invited Paper: Dielectric Properties of CaCu3Ti4O12 Polycrystalline Ceramics[J]. Electronic Materials Letters, 2011, 7(4): 287-297.

[12]

Li W, Qiu S, Chen N, . Enhanced Dielectric Response in Mg-Doped CaCu3Ti4O12 Ceramics[J]. Journal of Materials Science & Technology, 2010, 26(8): 682-686.

[13]

Ni L, Chen X M Enhanced Giant Dielectric Response in Mg-Substituted CaCu3Ti4O12 Ceramics[J]. Solid State Communications, 2009, 149(9): 379-383.

[14]

Li M, Cai G, Zhang D F, . Enhanced Dielectric Responses in Mg-Doped CaCu3Ti4O12[J]. Journal of Applied Physics, 2008, 104(7): 074 107-074 107-4.

[15]

Ni L, Chen X M Enhancement of Giant Dielectric Response in CaCu3Ti4O12 Ceramics by Zn Substitution[J]. Journal of the American Ceramic Society, 2010, 93(1): 184-189.

[16]

Shao S F, Zhang J L, Zheng P, . High Permittivity and Low Dielectric Loss in Ceramics with the Nominal Compositions of CaCu3−x La2x/3Ti4O12[J]. Applied Physics Letters, 2007, 91(4): 042 905-042 905-3.

[17]

Feng L, Tang X, Yan Y, . Decrease of Dielectric Loss in CaCu3Ti4O12 Ceramics by La Doping[J]. Physica Status Solidi A, 2006, 203(4): R22-R24.

[18]

Yang Z, Zhang Y, Lu Z, . Electrical Conduction and Dielectric Properties of the Rb-Doped CaCu3Ti4O12[J]. Journal of the American Ceramic Society, 2013, 96(3): 806-811.

[19]

Cheng B, Lin Y H, Yuan J, . Dielectric and Nonlinear Electrical Behaviors of La-Doped CaCu3Ti4O12 Ceramics[J]. Journal of Applied Physics, 2009, 106(3): 034 111-034 111-4.

[20]

Felix A A, Orlandi M O, Varela J A Schottky-Type Grain Boundaries in CCTO Ceramics[J]. Solid State Communications, 2011, 151(19): 1 377-1 381.

[21]

Lin Y H, Cai J, Li M, . High Dielectric and Nonlinear Electrical Behaviors in TiO2-Rich CaCu3Ti4O12 Ceramics[J]. Applied Physics Letters, 2006, 88(17): 172 902-172 902-3.

[22]

Cai J, Lin Y H, Cheng B, . Dielectric and Nonlinear Electrical Behaviors Observed in Mn-Doped CaCu3Ti4O12 Ceramic[J]. Applied Physics Letters, 2007, 91(25): 252 905

[23]

Yuan J, Lin YH, Lu H, . Dielectric and Varistor Behavior of CaCu3Ti4O12-MgTiO3 Composite Ceramics[J]. Journal of the American Ceramic Society, 2011, 94(7): 1 966-1 969.

[24]

Lin Y H, Cai J, Li M, . Grain Boundary Behavior in Varistor-Capacitor TiO2-Rich CaCu3Ti4O12 Ceramics[J]. Journal of Applied Physics, 2008, 103(7): 074 111

[25]

Patterson E A, Kwon S, Huang C C, . Effects of ZrO2 Additions on the Dielectric Properties of CaCu3Ti4O12[J]. Applied Physics Letters, 2005, 87(18): 182 911-182 911-3.

[26]

Sakamaki R, Cheng B, Cai J, . Preparation of TiO2-Enriched CaCu3Mn0.1Ti3.9O12 Ceramics and Their Dielectric Properties[J]. Journal of the European Ceramic Society, 2010, 30(1): 95-99.

[27]

Lin Y H, Cai J, Li M, . High Dielectric and Nonlinear Electrical Behaviors in TiO2-Rich CaCu3Ti4O12 Ceramics[J]. Applied Physics Letters, 2006, 88(17): 172 902-172 902-3.

[28]

Clarke D R Varistor Ceramics[J]. Journal of the American Ceramic Society, 1999, 82(3): 485-502.

[29]

Li M, Feteira A, Sinclair D C, . Influence of Mn Doping on the Semiconducting Properties of CaCu3Ti4O12 Ceramics[J]. Applied Physics Letters, 2006, 88(23): 232 903-232 903-3.

[30]

Fang T T, Wang Y H Reassessment of Copper and Titanium Valences and Excess Holes in Oxygen 2p Levels of CaCu3Ti4O12[J]. Journal of The Electrochemical Society, 2011, 158(9): G207-G210.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/